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Executive Summary 

The Idaho Transportation Department (ITD) conducts a total number of state system 

bridges of 1,328 state bridge and 2,412 local bridge inspections. The required inspection interval 

is 24 months.  Some bridges of concern are inspected more frequently (12-month cycle) and if 

qualifying criteria is met, a few bridges are allowed to be increased to a 48-month cycle. 

Inspections are time-consuming and can pose safety risks to inspectors and the public if safety 

protocols are not followed. ITD uses under bridge inspection trucks (UBIT) to inspect 263 Idaho 

state bridges and 125 local bridges. 

This report outlines a feasibility investigation into the use of Unmanned Aerial Systems 

(UASs) for use in bridge inspections, with the goal of identifying future uses and research. The 

research team conducted a literature survey on the applications of UASs in State Departments of 

Transportation (DOTs). Most state DOT research or internal investigations have used or studied 

UASs for surveillance and traffic control in the past, but recently, UAS-based bridge inspection 

has become a popular research topic. Current technology limits UAS use to an assistive tool for 

the inspector to perform bridge inspections faster, cheaper, and without traffic closure, in some 

situations. The major challenges for UASs include satisfying restrictive Federal Aviation 

Administration (FAA) regulations, position control in Global Positioning Systems (GPS) denied 

environments, pilot expenses, availability, and any required data post-processing.  

The research team investigated two aspects of remote sensing in bridge inspections: visual 

inspection and autonomous defect detection, both using UAS inspection data. Several inspections 

on a lab made bridge using a 3DR Iris UAS showed UASs can be used for visual deck inspections 

and crack detection. An autonomous crack detection algorithm developed by the research team 

detected most of the deck cracks from the UAS inspection. In addition, the research team assessed 
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the surface condition of two steel girders supporting the bridge deck during the inspection from a 

hand-held First-Person View (FPV) monitor. The research team investigated the construction of 

three-dimensional (3D) models of the entire lab-made bridge using UAS inspection images. The 

research team used an off-the-shelf program, AgiSoft PhotoScan, to create the model without 

extensive pre-processing on the inspection images, which could improve the model, but was also 

prohibitively time consuming. The model was unacceptable and incomplete, and the authors with 

ITD engineers decided that the entire process (pre-processing, model creation and post-processing) 

was too time-consuming to pursue for routine use.  

The next phase of this study required the research team to determine the feasibility of 

fatigue crack detection using three UAS: 3DR Iris, DJI Mavic, and a custom-made octocopter 

called the Goose. The research team equipped each UAS with a visual camera. Then the research 

team identified the minimum requirements, in terms of camera distance to the defect of interest 

and lighting conditions, in which a test-piece with a known fatigue crack would be visible. In an 

indoor, GPS-denied, climate controlled space, the research team carried out a set of experiments 

to find the test-piece fatigue crack in the enclosed Utah State University structural lab. The crack 

was not visible in the images captured by the 3DR Iris due to its erratic flight control in absence 

of GPS signals and its camera specifications. The DJI Mavic pictures were acceptable since the 

UAS exhibited stable flight even without GPS and was able to navigate to within 20 to 25 cm (8 

to 10 in.) of the defect and detect the fatigue crack even in low lighting conditions. Similar to the 

3DR Iris, the Goose relied mostly on GPS signals for control and failed to get close enough for 

fatigue crack detection. However, the Nikon camera, which was mounted on the Goose, had an 

optical zoom option which allowed the UAS to be 70 cm (30 in.) away from the area of interest.  



10 

 

 

 

The last step was to conduct inspections of an in-service bridge using UASs. This would 

allow the research team to evaluate the UASs’ performance in GPS-denied and uncontrolled 

environments. The 3DR Iris had considerable difficulty maintaining control due to wind, and 

therefore the inspection images were unacceptable. The DJI Mavic could safely get close enough 

to the crack for real-time detection, and using the digital zoom in the camera helped acquire images 

with detectable fatigue cracks that could be seen on the cell phone sized viewscreen. The DJI 

Mavic camera has the ability to tilt the camera up to 30 degrees, which can limit visibility. The 

Goose was not flown under the bridge since the flight characteristics require more than the 2 m 

(6.5 ft) clearance between the bridge and ground to limit ground effects. The research team 

developed an image processing algorithm for autonomous fatigue crack detection, which identified 

more than 80 percent of the actual length of the crack in the DJI Mavic images. More images are 

required to evaluate the effectiveness of the algorithm. The research team recommends the DJI 

Mavic as a possible solution for under-bridge inspections due to its use of sonar signals in absence 

of GPS, camera quality with light exposure control, obstacle avoidance algorithms, and small size 

that allows it to maneuver in tight places.  

In addition to visual images, the research team examined another non-contact method by 

performing passive (using only ambient heat) and active (using external heating sources) 

thermography experiments on the fatigue test-pieces from ITD. Two thermal cameras were used 

in the thermography experiments: a FLIR SC640 (with 1C sensitivity) and a FLIR E8 (with 0.2C 

sensitivity). The research team did not observe fatigue cracks in the thermal images taken in the 

passive case using the FLIR SC640. The E8 camera results were somewhat successful, but not 

useful for UAS inspection. It was shown that it is possible to use active thermography and the 

FLIR E8 camera for fatigue crack detection. Despite this success, thermography using UASs for 
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fatigue crack detection is not feasible at this time because active thermography requires an external 

heat source.  

Phase three of this study was to perform an inspection of a fracture critical bridge in 

Ashton, Idaho. The research team selected the DJI Mavic based on its performance in the previous 

tests. During the inspection, the minimum achievable clearance for UASs to avoid collision in 

gusty winds was 75 cm (30 in.). Only two of the previously detected fatigue cracks were inspected 

by this UAS since it was unstable over the river. The instability was because the UAS uses 

downward sonar signals for stabilization, which were confused by the fast-moving water. Fatigue 

cracks were not visible in the images. However, minor rusting and paint deterioration of the bridge 

girders, floor beams, girder splice, and other under-bridge members were visible using the 

inspection images. Concrete delamination, efflorescence, cracking in concrete, mild steel rust, and 

paint condition were detectable in the DJI Mavic pictures. 
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Chapter 1: Introduction 

Research Motivation 

The Idaho Department of Transportation (ITD) is responsible for inspection of 1,328 state 

bridges and 2,412 local bridges, listed in the National Bridge Inventory (NBI). ITD chooses to 

inspect the state bridges internally while using seven to ten consultant firms to conduct local bridge 

inspections periodically. ITD performs Inventory Inspections, Routine Inspections, Damage 

Inspections, In-depth Inspections, Fracture Critical Inspections, Special Inspections, and Complex 

Inspections. While emergencies do arise for which the Under Bridge Inspection Trucks (UBITs) 

may be needed (e.g. damage inspection), the UBIT is specifically programmed to be used for In-

Depth Inspections, Fracture Critical Inspections, Special Inspections, and Complex Inspections, 

which cover 263 state bridges, and 125 local bridges. With the exception complex bridges, the 

majority of the UBIT inspections are considered In-depth Inspections. According to the ITD bridge 

inspection manual section 4.2.3.3, an In-depth inspection is typically performed to (Idaho 

Transportation Department 2016):  

 Assess bridge elements not accessible during routine inspections. 

 Obtain more sophisticated data. 

 Perform special testing. 

 Bring in other experts to assess particular problems.  

The main reason for an In-depth inspection is to assess bridge elements. Bridge element 

assessments are the main motivation for researching Unmanned Aerial System (UAS) technology 

because inspecting with a UBIT adds additional expense and time to the inspection procedure, 

including but not limited to scheduling UBITs and maintenance of traffic. For this reason, ITD 

prefers to complete the inspection without a UBIT when possible. ITD has three full-time 
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inspectors for the entire state covering 216,000 km2 (84,000 mi2) including 940 centerline km (612 

centerline mi) of the Interstate Highway System. Two UBIT trucks and one full-time UBIT 

operator are accessible to ITD for all state and local bridge inspections. Inspections can involve 

exposure and other risks if safety protocols are not rigidly followed. Safety protocols often require 

additional personnel, training, and equipment. Thus, they can be costly but are necessary. A 

common routine bridge inspection requires one inspector to spend 20 minutes to 10 hours 

performing an inspection. Time required depends on the size and the complexity of the bridge. In 

addition to the time spent on the inspection, the inspector must provide a report to summarize their 

findings. Typically, writing a report takes up to 4 hours. Inspectors usually perform the inspection 

process using targeted visual techniques for more efficient and streamlined inspections. In targeted 

inspections, only regions with a high probability of a specified defect will be visually inspected.  

Use of UASs for bridge inspection has the potential to improve this practice in Idaho by 

limiting the need for UBITs and decreasing inspection time in certain situations. This study is 

focused on evaluating the limitations of UAS capabilities in a targeted inspection, which is defined 

for the purposes of this report as UAS inspection of a localized area for a specific defect, as 

opposed to observation of the entire bridge or several locations for any number of defects. One of 

several defects that ITD inspects for, and usually requires a UBIT, is steel cracking in the 

superstructure. Fatigue cracks are considered one of the most critical and hard to find defects for 

which UAS technology may be useful in aiding ITD inspectors. However, fatigue cracks are also 

the most challenging for UAS, specifically due to the environment, lack of GPS signals, variable 

pilot skill, and the typical locations of fatigue cracks. This report, while providing some 

preliminary qualitative inspections of some fabricated defects, is focused on determining if fatigue 

cracks can be detected on steel superstructures.  
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Use of UAS by ITD 

ITD initiated a study in April 2014 to investigate the use of UASs in areas that could be 

dangerous or costly for a human inspector. In 2015, ITD district engineers authorized a Drone Pilot 

Project that would investigate the possibility of using UASs for ground surface gathering, bridge 

inspection, and construction inspection and documentation missions. The flight company selected 

was Empire Unmanned, with assistance from Advanced Aviation Solutions, which is now a 

subsidiary of Empire Unmanned. Three areas were selected for the Drone Pilot Project: the area 

around the I-15/US-30 interchange in Pocatello, Canyon Creek Bridge on SH-21, and the I-84 

Snake River Bridges near Declo.  

ITD project coordinators reported that the biggest barrier for these tasks was not technical, 

but regulatory. To fly commercially, the pilot operated under a Federal Aviation Administration 

(FAA) Section 333 exemption, which included a provision that all “non-participating personnel” 

could not be under the UAS for a 150 m (500 ft) radius. This meant that all traffic would have to 

be stopped while the UAS was in flight. Empire Unmanned secured clearance to fly over live 

traffic. 

The first flight took place on May 18, 2015, on Interstate I-15 near the US-30 interchange 

in Pocatello, Idaho. The pilot flew the fixed-wing UAS, a Sensfly eBee RTk, twice, with a total 

flight time less than 30 minutes. The first flight was for traditional photogrammetry processing, 

where the ground targets would be used to place and scale the information taken by the camera. 

The second flight used a base station to send corrective information to the eBee so that the photos 

would have the correct information to make an accurate point cloud, eliminating the use of ground 

targets. This flight provided aerial photo mosaics and a point cloud of the area. The data for the 

pilot project can be found at: 
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pw://itdhq1app57.itd.state.id.us:PWITD/Documents/P{9a8aa592-f1d9-4fcc-91c7-

607a25ea10ce}/ 

The second flight was over Canyon Creek Bridge on SH-21, which is between Idaho City 

and Stanley. The plan was to use flaggers to stop traffic while a multi rotor UAS was used for the 

flights. Traffic control for the first flight had to be modified because flaggers had not arrived. A 

DJI Phantom UAS equipped with a visual sensor flew while observers on each side of the bridge 

watched for traffic. When a vehicle was spotted, the pilot would move the Phantom to a spot away 

from the roadway until the vehicle cleared the area, after which it would resume the flight. After 

the first flight, the flaggers arrived and a traditional flagger set up was used. The rest of the flights 

used a DJI S550 Flier, a six-rotor aircraft that held the thermal sensor. There were five total flights, 

with each flight lasting about 5 minutes. The deliverables included photo mosaics of both color 

and greyscale thermal imaging and a video of the color thermal along with point cloud and surface 

data. However, the thermal images did not have high enough resolution to show any sign of 

delamination and were insufficient for bridge deck inspection. 

The final areas were the I-84 Snake river bridges near Declo. That final flight took place 

June 22, 2015 and started with the placement of ground control points that would later be surveyed. 

The main flight was done with the eBee RTK and took about 20 minutes. After the eBee flight, a 

DJI Phantom surveyed the north side of the completed bridge from outside of the structure, 

enabling GPS-aided navigation. The research team extracted point clouds, surface photos, aerial 

photos, photos of the north side of the completed bridge, and a measurement of an on-site stock 

pile from the data. The next steps for the Drone Pilot project were to do follow up flights on SH-

21 and I-84 and to continue processing the data that had been received so far. According to the 

ITD project leader, the results indicated that UAS inspections are a safe and effective way to gather 
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data that can be used for design, construction, and ground monitoring purposes. According to 

district engineers, research projects will need to be done to test the accuracy and usability of the 

UAS data. Since the completion of this study, ITD Video has been used for UAS imaging of 

flooding during spring 2017 and documenting a historic bridge. 

Research Objectives 

The main research objective was to study the effectiveness of using UASs to detect steel 

fatigue cracks in a GPS-denied environment. Task 1 was to prove that UASs can fly safely in GPS-

denied environments and to attempt to identify several defects on a lab made bridge. Task 2 was 

to perform a literature review and to determine limitations that exist when using UASs to perform 

an under-bridge inspection. Task 3 was to identify several UASs, cameras, lighting, and 

environmental conditions that UASs can detect fatigue cracks in, and to develop software that can 

automatically detect a fatigue crack from visual images. Task 4 was to perform an inspection of a 

recently inspected in-service bridge for fatigue cracks and compare the results to those of the 

inspection reports. Task 5 was to compile the final report.  

FAA Regulations for Flying UASs 

There are two sets of rules for flying any aircraft: Visual Flight Rules (VFR) and Instrument 

Flight Rules (IFR). According to the “Aeronautical Information Manual”, a controlled airspace is 

defined as “…an airspace of defined dimensions within which air traffic control service is provided 

to both IFR and VFR flights in accordance with its classifications” (Air Mobility Command 2012). 

In the United States, the International Civil Aviation Organization (ICAO) designates controlled 

airspaces as stated in Table 1.1. 
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Table 1.1 Designated Airspaces in United States (Adapted from Aeronautical Information 

Manual [Idaho Transportation Department 2016]) 

Class  Definitions 

Class A From 5,500 m (18,000 ft) Mean Sea Level (MSL) up to and including Flight Level  

Class B From the surface to 3,000 m (10,000 ft) MSL; or around large airports 

Class C 
From the surface to 1,200 m (4,000 ft) above the airport elevation; or around midsize 

airport 

Class D From the surface to 760 m (2,500 ft) from the airport elevation or around small airports 

Class E A regulated airspace that is not classified as A, B, C, and D 

Class G Uncontrolled airspace with no IFR operation. 

One of FAA’s responsibilities is to provide safety regulations for flying UASs. FAA 

recognizes two categories for UAS use: “Fly for fun” and “Fly for work/business.” The former 

does not require permission from FAA, but the vehicle should be registered through the FAA 

website. The “Fly for work/business” category is restricted by FAA. The latest version of the FAA 

rules was published on the FAA website on June 21, 2016 (Fact Sheet 2017). Some of these 

regulations are as follows: 

 The total weight of the unmanned aircraft should be less than 25 kg (55 lb). 

 The vehicle must remain within the visual line-of-site of the remote pilot in command, 

the person manipulating the flight controls, and the visual observer during the flight. 

 The aircraft must not operate over any persons that are not directly participating in the 

operation, are not placed under a covered structure, and are not inside of a covered 

stationary vehicle.  

 Flight is only permitted during daylight or civil twilight with appropriate anti-collision 

lighting. 

 The sole use of a first person view camera does not satisfy the “see-and-avoid” 

requirements.  

 The maximum altitude is 133 m (435 ft) above the ground level, or within 133 m (435 ft) 

of a structure.  
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 The maximum speed of the UAS must not exceed 160 km/h (100 mph). 

 No person may act as a remote pilot or visual observer for more than one UAS at the 

same time. 

 The UAS operator must either hold a remote pilot airman certificate or be under the 

direct supervision of a certificate holder. 

 UASs must be registered and certified by the FAA. 

 The UAS must not be flown within 8 km (5 mi) of an airport without prior authorization 

from the airport operators. 

 The UAS must not be flown from a moving vehicle.  

Pilot requirements are: 

 Must be at least 16-years old. 

 Must pass an initial aeronautical knowledge test at an FAA-approved knowledge testing 

center. 

 Must be vetted by the Transportation Safety Administration (TSA). 

 Must pass recurrent aeronautical knowledge test every 24 months.  

Based on these requirements, a certified pilot can fly a standard UAS under a bridge 

without traffic closure as long as the UAS is not flown directly over vehicles. However, it is 

possible to get a wavier for live traffic flights but it depends on the UAS altitude and location. If 

traffic is both above and under a given bridge, like in a flyover, the traffic under the bridge would 

need to be stopped to inspect under this bridge, just like the traffic would need to be stopped above 

the bridge to perform an inspection above the bridge. 

Registered aircraft must have an application form (AC Form 5050-1) and evidence of UAS 

ownership. After submitting these documents, the UAS is registered and the pilot can request a 



19 

 

 

 

Certificate of Authorization (COA). The following information is required to submit the COA 

application form: concept of operation and type of the missions, operation location, altitude, 

communications, and flight procedures (Otero 2015). After submission, “… FAA conducts a 

comprehensive operational and technical review. If necessary, provisions or limitations may be 

imposed as part of the approval to ensure the UAS can operate safely with other airspace users. In 

most cases, FAA will provide a formal response within 60 days from the time a completed 

application is submitted…” (FAA Issues 2016). The COA application also requires proof of 

airworthiness for the UAS. This proof can be obtained either by submitting an Airworthiness 

Statement, or through FAA’s Certificate of Airworthiness. Because of a new interim policy, FAA 

has been speeding up COAs, also known as certificate of waiver for section 333, for certain 

commercial UASs. Section 333 exemption holders now are automatically granted with “blanket 

400-foot” which allows them to fly anywhere in the country except for restricted airspaces, as long 

as they are below 121 m (400 ft) and the UAS is not heavier than 25 kg (55 lb). The part 107 

regulations provide a flexible framework, however, more opportunities have been provided by 

FAA to omit these regulations (Certificates of Waiver 2017). In order to illustrate the changes in 

recent rules Table  demonstrates the summary of the regulations for flying UASs and micro UASs 

(which weigh less than or equal to 2 kg [5.45 lb]) as of Otero et al. from 2015 and now (Otero 

2015). It seems that restrictions have relaxed, the definition of UAS and micro UAS seems to have 

been removed, FPV is not allowed for the pilot and the operator certificate has been defied as the 

FAA Part 107 exemption. Operation near airports has been relaxed, with permission and operation 

of densely populated regions (densely is not rigorously defined by the FAA at this time) is only 

allowed with a waiver. Note that Autonomous operation is defined as any flight with a drone that 

the pilot-in-control is not in direct control of the UAS.  
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Table 1.2 UAS and Micro UAS Regulations (Adapted and Updated from Otero et al. 2015) 

Provision 
From Otero et al. 2015 As of this writing 

UAS Micro UAS UAS 

Maximum Weight (UAS plus 
payload) 

25 kg (55 lb) 2 kg (4.5 lb) 
25 kg (55 lb) 

Airspace confinements 
Class G, and Class B, C, D, 
E with Air Traffic Center 

permission 
Only Class G 

Class G, and Class 
B, C, D, E with Air 

Traffic Center 
permission 

Distance from people and 
structures 

No operation over any 
person not involved and 

uncovered 
No limitation 

No operation over 
any person not 

involved and 
uncovered 

Autonomous operations Yes No 

Yes, but pilot in 
charge must be 

able to take 
control in 

emergency 

First Person View (FPV) 
Permitted; if visual line 

of sight is satisfied 
Not permitted 

Only by Visual 
Observer 

Visual observer training Not required Not required Not required 

Operator training Not required Not required FAA Part 107 

Operator certificate 
Required with 

knowledge test 
Required without 
knowledge test 

FAA Part 107 

Preflight safety assessments Required Required Required 

Operation within 8 km of an 
airport 

Prohibited Prohibited 

Prohibited 
without 

permission from 
Air Traffic Control 

Operate in densely 
populated region 

Permitted Permitted 
Prohibited 

without Waiver 

Liability insurance Not required Not required Not required 

Night operation Prohibited Prohibited 

Prohibited 30 
minutes before 
and after civil 

Twilight 
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UAS Definitions 

UASs are generally defined as any aircraft or aerial device which is able to fly without an 

onboard human pilot. They are also known as unmanned aerial vehicles, drones, remotely piloted 

aircraft, remotely operated aircrafts, remotely piloted vehicles, and remote controlled helicopters. 

Depending on the application, UASs are equipped with different types of non-contact sensors like 

visual cameras, thermal cameras, Light Detection and Ranging (LiDAR) sensors, ultrasonic 

sensors, etc. UASs’ control and navigation are commonly carried out by Global Positioning 

Systems (GPS), Inertial Navigation Sensors (INS), Micro-Electro-Mechanical Systems (MEMs), 

gyroscopes, accelerometers, sonar sensors, and Altitude Sensors (AS), all onboard a UAS (Pajares 

2015). The collection of the UAS platform, sensors, and control system form a system known as 

an Unmanned Aerial System (UAS).  

GPS is a radio navigation system that allows land, sea, and airborne users to determine 

their location and velocity. INS is a navigation aid that uses a computer, a set of motion sensors, 

and a set of rotation sensors to continuously calculate the position, orientation, 

and velocity (direction and speed of movement) of a moving object without the need for external 

references. It is used on vehicles like ships, aircrafts, submarines, guided missiles, and spacecraft. 

MEM is the technology of microscopic devices, particularly those with moving parts.  

An Unmanned Aerial System (UAS) consists of three parts, according to the Association 

for Unmanned Vehicle Systems International (AUVSI): the vehicle that might be an aircraft, a 

multi-copter, or a helicopter; payload that includes the weight of all sensors mounted on the 

vehicle; and the ground control system or station, which sends commands to the vehicle for takeoff, 

positioning, and landing. Based on size, weight, endurance, and range of flying altitude, there are 

three classes of UASs: tactical, strategical, and special task (Pajares 2015). The UASs usually used 
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in civilian applications, such as bridge inspection, are classified as tactical UASs, as defined in 

Table . However, the designation between micro UAS and UAS seems to be arbitrarily defined by 

different sources and is not an FAA designation (Otero 2015, Bento 2008). 

Interpretation of Photographic Images 

In this study, several images, visual and thermal, of bridge structures, real or simulated, 

were evaluated. In all cases images were evaluated by the same inspector. This inspector had a 

Master’s degree in structural engineering, but no bridge inspection training. Images were viewed 

on different media, cell phone and desktop screens, as noted in the sections below. 

Pilot 

Only a single pilot was used from the start to the end of this study for the presented 

investigations. This pilot obtained his part 107 FAA UAS license at the beginning of the study and 

was therefore relative novice at flying UASs, by the end of the project he had logged 110 hours on 

this and other endeavors. 

Archived Data 

All experimental data is presented, organized by experiment number, at the following link 

for download until December 2017. 

https://usu.box.com/s/r0iz2qywsp106rxgzrxqzrrib5g9t6jt  
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Chapter 2: Literature Review 

UAS Applications for Bridge Inspection 

Several states have investigated UAS applications for numerous state DOT missions such 

as traffic surveillance, avalanche control, mapping, construction project monitoring, bridge 

inspection, etc. In this section, studies conducted on using UASs for bridge inspections are briefly 

presented.  

California 

In 2008, California DOT and University of California at Davis published a report on bridge 

inspection using aerial robots (Moller 2008). The researchers designed a custom UAS to be 

tethered to the ground, therefore making it easier to control and conform to the FAA regulations 

at the time. The researchers then mounted a high-resolution video camera on the UAS with forty-

five-degree tilt. Next, the researchers developed the onboard Flight Control Computer to provide 

a redundant high-speed communications link to manage the UAS stability. California DOT 

terminated the project because it did not result in a fully-deployable aerial vehicle due to the 

following problems: unreliable heading sensor data (heading sensor is an earth’s magnetic field 

sensor which was used as a compass), instability (especially in wind), and unsuccessful 

implementation of an altitude holder sensor. The California research project was one of the first 

known research projects done by DOTs for utilizing UASs in bridge inspections. 

Georgia 

In 2014, Georgia Institute of Technology and Georgia DOT published the outcomes of 24 

interviews with Georgia DOT personnel. The goal of these interviews were to evaluate the 

economic and operational advantages and drawbacks of UASs within traffic management, 
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transportation, and construction (Irizarry 2014). The Georgia study included an investigation of 

five different UAS configurations, A through E. System A was a quad-motor UAS with FPV, 

Vertical Take-off and Landing (VTOL), and a video camera suitable for monitoring operations 

such as, but not limited to, traffic monitoring. System B was an enhanced version of System A, 

equipped with LiDAR. Georgia DOT recommended this system for any mission that involved 

mapping. System C expanded upon System A, with emphasis on prolonged environment/region 

monitoring in areas such as construction sites. System D was proposed as a UAS for county-sized 

missions, whereas Systems A through C were regional. A fixed-wing aircraft with a wingspan size 

of 2 m to 6 m (6.5 ft to 20 ft) and capable of high-quality aerial photogrammetry comprised System 

D. This system was suggested as a proper candidate for post-disaster response missions and 

highway control. Finally, System E configuration, which was recommended for bridge inspections, 

consisted of a multi-rotor copter with eight or more motors, potentially tethered, capable of VTOL, 

and equipped with LiDAR and safety pilot mode. 

Michigan 

Michigan DOT published the results of their experiments on five UASs (Brooks 2015). 

These UASs were equipped with a combination of visual, thermal, and LiDAR sensors to assess 

critical infrastructure and their issues, for example bridges, confined spaces, traffic flow, and 

roadway assets. Researchers concluded that UASs are a low-cost, flexible, and time-efficient tool 

that can be used for multiple purposes: traffic control, infrastructure inspections, and 3D modeling 

of bridges and terrain. Michigan DOT reported each UAS to be suitable for a specific task in 

Michigan DOT. A VTOL UAS, equipped with thermal and visual cameras, proved to be the most 

appropriate for high-resolution imaging of a bridge deck. A VTOL UAS was able to calculate the 

locations and volumes of the spalls and delaminations of bridge decks. The deck inspection using 
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non-contact sensors had mixed results when compared to hammer sounding results. These issues 

stemmed from the many patches and materials used to repair concrete, spalls, and other surface 

discontinuities present on bridge decks (i.e. there was no surface homogeneity).  

Minnesota 

Minnesota DOT initiated a comprehensive investigation of the benefits and challenges of 

UAS bridge inspection (Zink 2015). Collins Engineering inspected four bridges in Minnesota 

using UASs to study the effectiveness of VTOL UASs. The first bridge inspection was a 26 m (85 

ft) long single span prestressed concrete bridge. The UAS could not perform an under bridge 

inspection due to low-clearance and lack of GPS signal. The human inspection and the UAS 

inspection detected bridge deck and rail defects like spalls and cracking. The inspector detected 

missing anchor bolt nuts during the under-bridge inspection, while the UAS was unable to detect 

this defect. However, mild scour was only detected by UAS images. A stitched model of the bridge 

deck was generated after the deck inspection. The second bridge inspection was a 100 m (330 ft) 

long open spandrel concrete arch bridge. The UAS could not survey the bridge deck due to traffic. 

The UAS also could not maneuver under the bridge due to the absence of GPS signals, but a zoom 

lens provided reasonable visibility for some under-bridge items. In this case, the reported mild 

scour was not detectable in the UAS images. This time the UAS inspection results showed bearing 

deterioration, which the previous human inspection missed. On the third structure, a five-span steel 

underdeck truss was inspected by UAS. The UAS investigated the truss superstructure and 

substructure and the results were in close agreement to the human inspection results. The final 

bridge was approximately 850 m (2,800 ft) with five truss arch spans. The UAS inspection was 

carried out, but it was not compared to a human inspection. Collins Engineering concluded that 

UASs can be used for bridge inspection while posing minimum risk to the public and the flight 
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personnel. In some cases, UAS images provided a cost-effective way to obtain detailed information 

that may not normally be obtained during routine inspections. FAA regulations prevented the team 

from flying UASs over traffic, negating the benefits of UAS inspections for the deck.  

Florida 

Florida DOT (FDOT) began to investigate the applications of UASs in 2005 with the main 

focus on traffic management and road monitoring (Farradine 2005). In 2015, FDOT published 

another UAS research project investigating the feasibility of UAS bridge inspection and high mast 

luminaires (Otero 2015). A UAS, equipped with high-definition cameras, was used in lieu of 

experienced inspectors to achieve the following goals: reduce the cost of inspection, reduce the 

hazards to the inspector, increase the public safety, and increase the inspection effectiveness 

through more comprehensive data acquisition. Limitations were also identified: allowable 

payloads, control and navigation in severe winds, and poor image quality in low-light conditions.  

One of the goals of this study was to select the main UAS components based on the 

demands of the project. The researchers developed a weighted factor analyses to provide a 

systematic decision-making toolbox for each component. This led the research team to select three 

VTOL UASs, four ground viewing stations, and three visual cameras. Finally, the researchers 

selected a dual camera setup and a remote control gimbal on a six rotor UAS to perform the 

inspections. This UAS was tested for flight in windy conditions. The UAS’s closest distance from 

an object was estimated at 0.3 m (1 ft) for wind speed less than 11 km/h (7 mph) and wind gusts 

less than 16 km/h (10 mph). In addition, the final report recommended 1 m (3 ft) clearance in wind 

speeds greater than 24 km/h (15 mph) and wind gusts greater than 32 km/h (20 mph). FDOT found 

that UASs can collect inspection data for a high mast luminaire in 8.5 minutes while providing 

adequate pictures in acceptable detail.  
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Additionally, the research team performed two preliminary field tests at the Florida 

Institute of Technology campus under controlled conditions; a pedestrian bridge and a wooden 

bridge were inspected under 15 minutes. The inspections indicated moderate and severe rust on 

welded or bolted structures, a longitudinal crack along the guard rail, and a small stress crack on 

the beam underneath.  

The research team also participated in a field test with FDOT inspectors and performed the 

inspection in 10 minutes while subject to 20km/h (12 mph) wind speeds and 29 km/h (18 mph) 

gusts. Rust, cracks through epoxy, bearing deformation, and deck and girder separation were 

among the detected flaws. The other field test was performed on a steel railroad drawbridge with 

the wind speed at 11 km/h (7 mph) and the wind gusts at 27 km/h (17 mph). The team detected 

missing nuts and severely rusted bolts. The team performed the third field inspection on a concrete 

and steel superstructure bridge in 10 minutes with the wind speed at 27 km/h (17 mph) and the 

wind gusts at 40 km/h (25mph). This inspection showed mild to severe corrosion regions on 

transverse girder bracing and separation between the girder and the deck in the images. One new 

aspect the FDOT research introduced was a service and maintenance schedule for UASs. The 

research team recommended inspecting motors, propellers, airframe structure, and batteries at least 

every 25-hours of operation. 
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Literature Review Summary 

This chapter presents the past applications of UASs in DOTs. Figure 2.1 shows states with 

either past or current investigation of UASs in red. Although most of these research projects have 

not been focused on bridge inspections, UASs have been a fast-growing technology in the area of 

bridge inspection for the past a few years. Table 2.1 summarizes the conducted DOT funded UAS 

related research for bridge and infrastructure inspections. 2 summarizes the inspection tasks 

attempted by the different studies focused on bridge inspection. 

 

 

Figure 2.1 Map of State DOTs that have documented Past or Current Study of UASs 
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Table 2.1 Civil Infrastructure Condition Assessments Using UASs  

State DOT Year UAS Inspection Achievements Inspection Challenges 

California 2008 ES20-10 Inspection was not performed 
UAS Instability and control 

issues 

Georgia 2014 N/A Proposition of five UAS 
Actuall inspections were 

not performed 

Michigan 2015 

Bergen 
HexaCopter, 
DJI Phantom, 
BlackoutMini 
Quadcopter, 
Heli-Max 1 Si. 

 

Autonomous spall detection 
Deck 3D model reconstruction 

Deck delamination detection using 
thermal images 

Thermal and visual combination  
Successful pump station and culvert 

inspections using drones 

The automated spall 
detctor understimated the 

actuall spall area 
Thermal inspections were 
inaccurate because of the 

variation in surface 
emissivity of the deck 

Non-automated navigation 
and controlling system 

Inaccurate GPS 

Minnesota 2015 
Aeron 

Skyranger 

Defect detction: cracks, spall, scour, 
missing bolts, Building the map of 

the structure, IR technology to 
detect delamination, Reasonable 

agreement between the results of 
UAS and visual inspections 

FAA regulations prevented 
deck inspection 

Loss of GPS signals  
 

Florida 2015 
ArduPilot 
Mega 2.5 

Micro Copter 

Defect detection: cracks, spall, 
scour, missing bolts Reducing 

inspection cost and time in high 
mast luminars 

 

FAA regulations prevented 
deck inspection, 
No under-bridge 

inspections, Control issues 
in wind speed greater than 

25km/h, 
Low quality images in 

severe weather condition 

  

Table 2.2 Summary of Attempted UAS Bridge Inspection Tasks 

State DOT Year 

Under-
bridge 
UAS 

inspection 

Steel 
crack 

detection 

Concrete 
Surface 

Defection 
Detection 

Concrete 
Delamination 

Detection 

Visual 
Camera 

IR 
Camera 

California 2008 N N N N Y N 

Georgia 2014 N N N N N N 

Michigan 2015 N N Y Y Y Y 

Minnesota 2015 N N Y N Y N 
Florida 2015 N N Y N Y N 
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Chapter 3: Small Bridge Experiment 

The goal of the small bridge experiment was to simulate UAS bridge inspection on a lab-

made bridge with predefined defects to determine the performance, shortcomings, and demands 

for UAS bridge inspection. For this purpose, a small bridge measuring 6 m (20 ft) long, 4 m (13 

ft) wide, and 0.2 m (8 in.) thick (deck thickness) was built at the Systems, Materials, and Structural 

Health (SMASH) lab of Utah State University. The small bridge is shown in Figure 3.1. The 

research team made the bridge from on-hand materials used in previous research projects. The pre-

existing defects on this structure were concrete cracks, lightly corroded girders, and deck 

delamination. Concrete cracks were located on the top and bottom of the concrete deck. The bridge 

deck was supported by two steel girders. The girders had mild surface corrosion along the webs, 

the flanges, and the web stiffeners. The research team implanted the deck with subsurface 

delamination, formed by thin sheets of plastic, at the time of construction.  

 
 

Figure 3.1 Small Bridge at the SMASH Lab 

Girders 

Bridge 
Deck 
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At this point in the study, only a 3DR Iris UAS equipped with a GoPro Hero 4 camera 

was available. A schedule of the experimental damaged specimens is presented in Table 3.1. A 

schedule of experiments performed on the small bridge is presented in  

Table 3.2 and outlined in more detail below. Appendix A of this report provides a complete 

list of the specimens and experiments carried out in this study. 

Table 3.1 Schedule of Specimens for Small Bridge Experiment 

Specimen 

ID 
Source Defect Form Dimensions Location 

S01 USU 

Surface 

Concrete 

Cracks 

Lab-made 

Bridge 

deck 

20’ x 13’ x 

0.75’ 

SMASH 

Lab 

S02 USU 
Surface 

Corrosion 

Steel 

Girder 1 
W10 x 88 

SMASH 

Lab 

S03 USU 
Deck 

Delamination 

Lab-made 

Bridge 

deck 

20’ x 13’ x 

0.75’ 

SMASH 

Lab 

 

Table 3.2 Schedule of Experiments for Chapter 3 

Experiment 
ID 

Intent Specimen UAS Camera Site 
Page 

on The 
Report 

E001 
Detect 

Concrete Cracks 
(Manually) 

S01 
3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

16-17 

E002 
Detect 

Concrete Cracks 
(Autonomously) 

S01 
3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

17-18 

E003 
Detect 

Concrete 
Delamination 

S03 
3DR 
Iris 

FLIR E8 
Thermal 
Camera 

SMASH 
Lab 

19-20 

E004 
Detect Steel 

And Weld 
Corrosion 

S02 
3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

20-21 

E005 
3D Model 

Construction 
S01 

3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

21-22 
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Concrete Surface Cracks  

The cracks on top of the bridge deck were detectable in real-time using the FPV monitor, 

E001, as seen in Figure 3.2. The shortest crack was approximately 2 cm (1 in.) long, whereas the 

longest cracks on the deck were roughly measured up to 50 cm (20 in.). The UAS was flown within 

about a 1 m (3 ft) clearance of the deck. The majority of the cracks were visible in real-time. Figure 

3.3 shows an image from the inspection video where arrows indicate the detectable cracks and 

barely detectable cracks in the inspection image.  

 
 

Figure 3.2 Example of Top Cracks in the Color Image Acquired by the UAS, E001 
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Figure 3.3 Variety of cracks' Dimensions on the Bridge Deck, E001 

Automated Concrete Surface Crack Detection 

Monitoring and measuring cracks are common practices in bridge deck and road pavement 

inspections. One-hundred and six color images were used as a dataset to evaluate a crack detection 

algorithm that the research team developed (E002).  

For the purposes of this report, the standard image processing definition of accuracy 

(termed detection in this report) is defined as a weighted average of True Positive and True 

Negative reports. True positive is defined when a crack is detected by the algorithm while True 

Negative occurs when the algorithm finds no cracks in a sound image. In this report, when the 

algorithm finds more than 50 percent of the length of the crack in the defected dataset (determined 

visually by the research team), it is considered a True Positive. True Negative is considered when 

the algorithm finds no connected components resembling cracks in the sound dataset or when it 

provides a clutter-free image. This definition allows comparison to other crack detection 

algorithms in the image processing literature (Dorafshan 2017a). The crack detection algorithm 

used in this report had a 90 percent detection rate. Both of these results were more accurate than 

Barely observable crack 

Detectable crack 
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other contemporary visual image crack detection algorithms, one of which, when coded and used 

to analyze this same dataset, could only detect 45 percent of the cracks on this dataset (Talab 2016, 

Dorafshan 2016). Other crack detection algorithms in the literature report similar or lower numbers 

than the algorithm developed in this report (for example: 64 percent to 86 percent [Abdel-Qader 

2003], 73 percent [Hutchinson 2006], 90 percent [Nishikawa 2012]), although these are detected 

on different datasets. The Matlab code for the proposed concrete crack detection method is 

provided in Appendix B. The number of successful detections can be further increased by using 

better cameras, closer distance to the surface, more stable UAS, etc. Figure 3.4 shows the 

intermediate results of the crack detection algorithm on one of the images from the dataset.  

 

 

Figure 3.4 Automatic Crack Detection Based on UAS Images, E002 
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Deck Thermal Inspection  

The research team also used the deck to investigate thermal delamination detection using 

an FLIR E8 thermal camera, E003. For this experiment, the FLIR E8 was mounted on the 3DR 

Iris, which maxed out the payload, making it only able to fly a short distance off the ground for a 

short period of time, which is why the slab was not mounted on the girders of the small bridge. A 

smaller thermal camera was not available (Dorafshan 2017b). Even with this limitation, this 

experiment shows that it is possible with additional time and effort to detect subsurface 

(delaminations) and surface (cracks).  A 0.6 m (2 ft) by 0.9 m (3 ft) plastic sheet inclusion was 

embedded in the deck during construction to simulate a delaminated region (see Figure 3.5). The 

research team monitored the bridge deck when the deck was still hot from the day and ambient 

temperature was dropping (deck temperature was roughly 25C (70F) on average. The thermal 

image is shown in Figure 3.6. The delaminated region was detectable as a cold region in the 

thermal image. However, there are other cold regions not associated with the depicted 

delamination in Figure 3.5, which had severe cracking in those areas that could also be identified 

visually. These cracks effectively altered the surface, which caused faster heat loss than the 

surrounding sound concrete, and they presented comparatively colder spots. This small experiment 

proved that using thermal imagery for surface and subsurface defect detection is feasible, however, 

it was not the focus moving forward. 
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Figure 3.5 The Plan and Elevation View of the Deck and its Delamination, (E003) 

 

 
 

 

Figure 3.6 Captured Thermal Image, E003 

Girder Inspection  

The steel girders of the small bridge had minor surface corrosion which was visible in the 

real-time inspection videos (E004, see Figure 3.7). The distance between the UAS and the girder 

in Figure 3.7 was about 1 m (3 ft), similar to that recommended by Otero et al. in moderate wind 

Detected 
delamination 

Cracks 
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conditions (Otero 2015). In addition to corrosion on the girders, the weld quality of the web 

stiffeners was observable in real-time using the optical zoom feature (Figure 3.8). The camera the 

research team used for this inspection was a GoPro Hero 4, which is not ideal for scientific and 

accurate imagery due to its focal length and fish eye effect (see rounded edges of objects in corners 

of Figure 3.7). However, GoPro cameras are very popular for UASs due to their small size and 

light weight. Better cameras are likely to produce better results. 

 
 

Figure 3.7 Steel Girder Surface Corrosion and Rust in the Image Acquired by UAS, E004 

 

 
Figure 3.8 Visual Weld Inspection on the Small Bridge, E004 



39 

 

 

 

Off-the-Shelf 3D Model Reconstruction 

The research team imported eight-hundred and forty images of the bridge to Agisoft 

PhotoScan, a commercial 3D model reconstruction software, to generate 3D models from 2D 

images (see Figure 3.9), E005 (Agisoft Photoscan 2017). No modifications or pre-processing 

operations were applied on the images before the model was constructed. The total processing time 

took about 16 hours. This execution time could be reduced considerably if the preliminary 

modification and masking operations were carried out before the 3D model generation. Regardless, 

ITD engineers considered this to be too much time, especially because many parts of the bridge 

were missing or partially missing. Additional effort could improve this model, but the time 

investment was not thought worth it by ITD engineers.  

 
Figure 3.9 Agisoft PhotoScan 3D Model of Small Bridge, E005 
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Lessons Learned from the Small Bridge Experiment 

Based on the small bridge experiments (E001-E005), the following observations can be 

made: 

 Image processing techniques (3D mapping or damage detection) that can detect defects are 

a significant advantage of UAS inspections, but must be tailored to the situation. Also, 3D 

mapping is not likely to be useful without significant effort and algorithm improvement.  

 Real-time and autonomous concrete deck crack detection is possible using UAS based 

images.  

 The light girder corrosion was detectable in real-time.  

 Concrete delamination detection was shown to be feasible using thermography and is a 

promising area of additional research.  

 Image processing techniques can be used to facilitate concrete crack detection and show 

promise for automated detection in real-time.  
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Chapter 4: Fatigue Crack Detection Requirements 

Finding fatigue cracks is a difficult and expensive task in bridge inspection. These cracks 

often occur in under-bridge members and can be troublesome for the bridge inspectors to access. 

This chapter investigates the potential of UASs equipped with visual cameras to detect fatigue 

cracks (E006, E007, and E008). First, the research team determined the required conditions for 

fatigue crack detection through controlled indoor experiments. These experiments were performed 

on a test-piece with an existing fatigue crack which was provided by ITD. The purpose of this test 

was to determine the optimum camera distance and lighting conditions for three different cameras 

designated to three different UASs. The UAS were then used to inspect a test-piece, which 

contained a fatigue crack, in a controlled environment (E009, E010, and E011) and in an 

uncontrolled environment (E012 and E013). The SMASH lab was selected as the controlled 

environment and an in-service bridge owned by the Utah Water Research Laboratory (UWRL) 

was selected as the uncontrolled environment. This was done in order to assess the limitations of 

UAS-based fatigue crack detection. The visibility of the fatigue crack in the captured images was 

assessed for each UAS under different circumstances. The research team developed an automated 

crack detection algorithm to detect the fatigue cracks in the captured images autonomously. The 

feasibility of using active and passive thermography to find the fatigue cracks on two test-pieces 

acquired from ITD have also been investigated. This chapter represents the summary of findings 

and provides some guidance for visual and thermal image based fatigue crack detection using 

UASs.  
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Fatigue Definition 

Fatigue is the tendency of a member to fail at a stress level below the elastic limit when 

subjected to cyclical loading. Fatigue cracks often are formed in load-bearing steel members 

during cyclic service loads and can result in the brittle fracture of the member. A fracture critical 

member (FCM) is a steel member in tension, or with a tension region, whose failure would 

probably cause a portion of the entire bridge to collapse. If the bridge system is “fracture critical” 

it requires a fracture critical member inspection, which consists of a hands-on inspection of FCM's 

or FCM components that may include visual and other non-destructive evaluation. 

There are three stages to crack growth: Stage 1: Initialization stage, when the crack starts 

at an internal flaw or change in geometry; Stage 2: Propagation Stage, growth of the crack (the 

stage in which there is the opportunity to find the crack and arrest or repair it); and Stage 3: Fracture 

Stage, failure occurs when the member breaks into pieces. Fracture is the local separation of 

material into two or more pieces when subject to stress. Fracture is initiated from a flaw in either 

material or design and when it reaches a critical size it may cause the member to rupture. Fatigue 

cracking normally occurs slowly with somewhat slow crack propagation, whereas fracture occurs 

abruptly without warning (Dexter 2013).  

Current Practice for Fatigue Crack Detection 

Finding fatigue cracks has been a major challenge in bridge inspections, mostly because 

fatigue cracks are short in length and very narrow in width. Fatigue cracks usually occur in under-

bridge members and connections that are difficult to access by conventional physical procedures. 

Also, the steel members and connections are usually covered with rust and other surface clutter, 

which makes visual detection difficult if not impossible. In addition, the low-light conditions under 

bridges are another challenge in visual fatigue crack detection. The current process for fatigue 
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inspections includes a visual or physical inspection (i.e. rust removal) and application of a suitable 

nondestructive evaluation (NDE) method such as dye penetration or magnetic particles, if 

necessary, to locate the cracks (Lee 2015).  Finding the cracks in this manner can be expensive, 

dangerous, and time consuming (Thompson 2012). 

Image-based flaw detection methods have gained considerable popularity in the past 

decade. However, with regard to bridges, most of the effort has been focused on two types of 

defects: surface concrete cracks and subsurface concrete delaminations using infrared 

thermography (Thompson 2012, Incropera 1985). Finding fatigue cracks is especially challenging 

when using visual images. For instance, the size, shape, and intensity gradient of surrounding 

pixels of a fatigue crack are different from conventional concrete cracks. Thus, the previously 

developed algorithms are not appropriate to detect them. In addition, the efficiency of these 

algorithms is tied to the quality of the image, which could be a function of camera specifications, 

lighting condition, camera distance, etc.  

Selected UASs  

The research team used three UAS to perform bridge inspections and defect detections in 

this Chapter and are listed in Table .  

Table 4.1 Investigated UAS for Fatigue Crack Detection 

UAS 3DR Iris DJI Mavic Goose 

Cost <$500 $1,000 $ 5,000 

Weight  1,282 g (2.8 lb) 743 g (1.62 lb) 11,400 g (25.2 lb) 

Type Quadcopter Quadcopter Coaxial Octocopter 

Flight Time 16-22 minutes 27 minutes 27.5 minutes 

Payload 400 g (0.8 lb) 900 g (2 lb) 14,400 g (32 lb) 

FPV Broadcasting yes yes no 

Camera GoPro Hero 4 DJI camera Nikon 

Obstacle Avoidance no yes no 

GPS-denied Altitude Measurement no Sonar Barometer 
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Fatigue Crack Detection-Minimum Conditions 

This section reports the results of a set of indoor experiments, E006 through E008. These 

experiments were performed to determine the requirements for three types of cameras performing 

fatigue crack detection. The requirements are in terms of lighting conditions and camera distance. 

For these experiments, a single test-piece with a known fatigue crack was observed under different 

conditions (UAS, camera, lighting, and environment). For the beginning of this section, only a 

single fatigue test-piece was available and a second was obtained near the end of the project, as 

seen in Table . Only additional thermographic experiments were run on the second test piece. Table  

summarizes the list of experiments performed in this chapter, much of which is detailed in the 

coming sections. 

Equipment 

Three cameras were used in these experiments: 

 GoPro Hero 4, up to 12 Mega-Pixel (MP) with 4000 by 3000 resolution, which is 

compatible with the 3DR Iris and many others. 

 DJI camera, 12 MP with 4000 by 3000 resolution, which was the onboard camera of the 

DJI Mavic. 

 Nikon COOLPIX L830, 16 MP, 4068 by 3456 resolution, which was selected to be 

mounted on the Goose. 

Table 4.2 Steel Test-Piece Schedule 

Specimen 

ID 
Source Defect Form Dimensions Origin 

S04 ITD 
Fatigue 

Crack 

Steel Puck 

1 

D= 1.65” (4.2 

cm) 

Unknown ITD 

Bridge 

S05 ITD 
Fatigue 

Crack 

Steel Puck 

2 

D = 1.65” (4.2 

cm) 

Unknown ITD 

Bridge 
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Table 4.3 Schedule of Experiments in Chapter 4 

Experiment 
ID 

Intent Specimen UAS Camera Site 
Page in 

the 
report 

E006 
Detect Fatigue Crack 

(Minimum 
Requirements) 

S04 N/A 
GoPro 
Hero 4 

Indoors 
(Office) 

27-28 

E007 
Detect Fatigue Crack 

(Minimum 
Requirements) 

S04 N/A 
DJI Built-

In 
Indoors 
(Office) 

30, 33 

E008 
Detect Fatigue Crack 

(Minimum 
Requirements) 

S04 N/A 
Nikon 

Camera 
Indoors 
(Office) 

30, 34 

E009 
Detect Fatigue Crack 

(Simulated Visual 
Inspection) 

S04 
3DR 
Iris 

GoPro 
Hero 4 

Indoors 
(SMASH 

Lab) 
35, 37 

E010 
Detect Fatigue Crack 

(Simulated Visual 
Inspection) 

S04 
DJI 

Mavic 
DJI Built-

In 

Indoors 
(SMASH 

Lab) 

35, 38, 
39 

E011 
Detect Fatigue Crack 

(Simulated Visual 
Inspection) 

S04 Goose 
Nikon 

Camera 

Indoors 
(SMASH 

Lab) 
35, 40 

E012 
Detect Fatigue Crack 

(Simulated Visual 
Inspection) 

S04 
3DR 
Iris 

GoPro 
Hero 4 

Outdoors 
(UWRL) 

42-45 

E013 
Detect Fatigue Crack 

(Simulated Visual 
Inspection) 

S04 
DJI 

Mavic 
DJI Built-

In 
Outdoors 
(UWRL) 

44, 46-
49 

E014 
Detect Fatigue Crack 

(Autonomously) 
S04 

DJI 
Mavic 

DJI Built-
In 

Outdoors 
(UWRL) 

51-53 

E015 
Detect Fatigue Crack 

(Passive 
Thermography) 

S04 N/A 
FLIR SC 

640 
Indoors 
(Office) 

54-55 

E016 
Detect Fatigue Crack 

(Passive 
Thermography) 

S05 N/A 
FLIR SC 

640 
Indoors 
(Office) 

54, 56 

E017 
Detect Fatigue Crack 

(Passive 
Thermography) 

S04 N/A FLIR E8 
Indoors 
(Office) 

56-57 

E018 
Detect Fatigue Crack 

(Passive 
Thermography) 

S05 N/A FLIR E8 
Indoors 
(Office) 

57-58 



46 

 

 

 

E019 
Detect Fatigue Crack 

(Active 
Thermography) 

S04 N/A FLIR E8 
Indoors 
(Office) 

58, 60 

E020 
Detect Fatigue Crack 

(Active 
Thermography) 

S05 N/A FLIR E8 
Indoors 
(Office) 

50, 61, 
62 

 

Lighting Condition Definitions and Camera Distance 

Lighting conditions play a major role in any sort of photogrammetry. The research team 

considered three lighting conditions to simulate different scenarios during the bridge inspection: 

 “Dark”, which is the approximation of the lighting conditions under a bridge during the 

daytime (according to USU onsite bridge), illumination range: 20-100 lx. 

 “Normal”, which is equivalent to the lighting conditions of a room with lights on, 

illumination range: 100-250 lx. 

 “Bright”, which is equivalent to the lighting conditions of a concentrated light source such 

as a flashlight, with illumination more than 250 lx. 

Illumination was measured using a cell phone light meter app, “Light Meter” installed on 

an iPhone 6. While, not the most accurate luminance measuring device, off by up to 35% from a 

light meter, on average, it was shown to provide acceptable relative measurement within the range 

of lux conditions in this investigation (Incropera 1985). In addition to the lighting conditions, the 

distance between the camera and the object of interest affects the images. To determine the 

performance of each camera, the indoor experiments were also performed from different camera 

distances: 5 cm (2 in.), 10 cm (4 in.), 15 cm (6 in.), 20 cm (8 in.), 25 cm (10 in.), and 30 cm (12 

in.). The 30 cm (12 in.) case is the most realistic scenario without using a zoom feature and the 

remaining were incremented down in 5 cm increments from the most realistic case.  
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Indoor Office Procedure 

The research team placed the test-piece indoors under variable lighting conditions. 

Lighting conditions were varied by measuring the test-piece surface illumination. The cameras 

were set in front of the test-piece and a picture was taken for each camera distance and lighting 

condition.  

Indoor Office Results 

After the research team carried out the indoor experiments, the images were viewed on a 

conventional desktop computer to determine the requirements for locating the crack without any 

image enhancement features. The maximum distance for each camera in each lighting condition 

was reported as the required camera distance if the crack was detectable visually.  

GoPro 

The GoPro camera provided reasonable video quality in past tests for general inspection 

purposes and is very popular for UASs due to its small size and light weight. This camera 

performed poorly in the Dark condition from all proximities and the crack was not visible in any 

taken images, see Figure 4.1(a). The surface of the test-piece was blurry at the 5 cm (2 in.) camera 

distance, as seen in Figure 4.1(b), and the crack was not detectable, E006. However, the crack can 

be seen in the images with 10 cm (4 in.) and 15 cm (6 in.) camera distances. The GoPro cameras 

use the ultra-wide angle lens to provide larger length of field and a better aperture setting, but using 

these lenses causes severe distortion (known as the fisheye effect) in the captured images. The 

ultra-wide angle lens used in the GoPro camera is also a fix-focus lens with a short focal length. 

That is why the close-up images taken by this camera from the test-piece were oftentimes worse 

than the images taken with greater camera distance.  
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The maximum camera distance for the GoPro camera in the Normal condition was 20 cm 

(8 in.), which is shown in Figure 4.2. The GoPro pictures, taken in the Bright condition, were not 

satisfactory because light reflections in the pictures washed out the crack. Even though the GoPro 

camera captured the fatigue crack at 20 cm (8 in.) in the Normal lighting condition, it is not 

recommended to use the GoPro Hero 4 camera for fatigue crack inspection. 

 
 

 

Figure 4.1 (a) Dark Condition, 10 cm (4 inches), GoPro (b) Normal Condition, 5 cm (2 inches), 

GoPro, E006 

DJI Camera 

The DJI Mavic has an onboard camera which was used to take the pictures, E007. The 

crack was not visible in the images taken in the Dark condition without exposure adjustment, 

however, the DJI Mavic camera can be adapted manually to low-light by increasing the exposure 

in real time. When the camera exposure was manually optimized to perform in the Dark condition, 

the crack was visible in the images with a 15 cm (6 in.) camera distance, as seen Figure 4.3. In the 

Normal condition, the crack was visible in the image taken at 20 cm (8 in.) away from the test-

piece. In the Bright condition, the maximum camera distance to see the crack visually was 25 cm 

(a) (b) 
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(10 in.) as seen in Figure 4.4. The required camera distance to detect the crack was 15 cm (6 in.) 

or less for the Dark condition, 20 cm (8 in.) or less for the Normal condition, and 25 cm (10 in.) 

or less for the Bright condition. The camera distance could be increased to 35 cm (14 in.) in the 

Normal condition and 40 cm (16 in.) in the Bright condition without the crack becoming 

undetectable.  

 
Figure 4.2 Normal Condition, 20 cm (8 inches), GoPro, Fatigue Crack Visible  
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Figure 4.3 Dark Condition, 15 cm (6 inches), DJI Mavic, E007 

 

 
 

Figure 4.4 Bright Condition, 25 cm (10 inches), DJI Mavic, E007 
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Nikon Camera 

The Nikon camera was also not able to capture images with a visible fatigue crack in the 

Dark condition, E008. In the Normal condition, the Nikon detected the crack when the camera 

distance was up to 30 cm (12 in.), as shown in Figure 4.5. In the images taken in the Bright 

conditon, the crack was not visible due to the light reflection in the captured images. These findings 

show the Nikon is best for use in the Normal lighting condition with maximum camera distance 

of 30 cm (12 in). Note that this is without using the zoom capability. With zooming (up to 32x 

optical), the camera could be considerably further away. 

Findings 

The results of this section indicate that visual fatigue crack detection from the captured 

images in the Dark condition is very difficult. Therefore, performing crack detection under a bridge 

will likely require the use of a light source. The Normal lighting condition was the optimum 

condition for both GoPro and Nikon cameras. The DJI Mavic camera performed better in the 

Bright condition, but its performance in the Normal condition was acceptable. The DJI Mavic and 

Nikon cameras took considerably better images compared to the GoPro. A GoPro camera, with 

the mentioned specification, is not recommended for under-bridge inspection with detailed defects 

(i.e. steel surface cracks). The results of this experiment are presented in Table 4.4.  
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Figure 4.5 Normal Condition, 30 cm (12 inches), Nikon, E008 

Table 4.4 Minimum Requirements for Each Camera to Detect the Fatigue Crack 

Camera Lighting Condition Required Camera Distance (C), cm (inch) 

GoPro 

Dark No Detection 

Normal 10 cm (4 in) <C< 20 cm (8 in) 

Bright No Detection 

DJI Mavic 

Dark C< 15 cm (6 in) (With Exposure Adjustment) 

Normal C< 20 cm (8 in) (No Exposure Adjustment) 

Bright C<25 cm (10 in) (No Exposure Adjustment) 

Nikon 

Dark No Detection 

Normal C<35 cm (12 in) 

Bright No Detection (Flashlight) 

Inspection in a Controlled Environment 

The second portion of this task was to simulate a bridge inspection in a controlled 

environment (E009 through E011). In these experiments, there was no wind, but the environment 

was GPS-denied and the vibrations from the UAS were introduced to the images. Using three 

UAS, several images were taken from indoor structures of the SMASH lab with the test-piece 
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attached to them in different locations. The three different UAS were flown in the lab to inspect 

the fatigue crack in a GPS-denied environment.  

3DR Iris Indoor Inspection 

The GoPro camera took pictures of the test piece in the lab from the 3DR Iris, E009. The 

test piece was attached to a steel frame. The Normal condition was replicated roughly by having 

the lights on in the lab. The 3DR Iris was not stable since the it does not have obstacle avoidance 

or altitude hold features when GPS is denied. The pilot had to stay within a safe distance of the 

target during the flight to prevent a collision. The closest the pilot was able to safely and stably fly 

the UAS was within approximately 50 cm (20 in) of the test-piece), which is more than twice that 

of the required camera distance obtained in the previous section. Figure 4.6 shows the picture taken 

by this UAS in the Normal lighting condition and the crack is not visible. The inspection results 

in the Bright and Dark conditions were also unsuccessful. 

DJI Mavic Indoor Inspection 

The performance of the DJI Mavic was evaluated in two scenarios: the Normal lighting 

condition with the test-piece attached on a horizontal steel beam approximately 3 m (10 ft) from 

the ground and the Dark condition with the test-piece attached to the roof frame, E010. Figure 4.7 

shows the image of the test-piece taken by this UAS in the Normal condition. The obstacle 

avoidance in the UAS does not allow the pilot to get closer than 60 cm (24 in.). However, the UAS 

was very stable in the GPS-denied condition without turning on the obstacle avoidance feature. 

The sonar altitude hold feature was used to stabilize the UAS so the pilot could get approximately 

as close as 20 cm (8 inches) to the test-piece while the camera was at 2X zoom. The crack is clearly 

visible in the captured image when viewed on a desktop. In addition, the crack was visible during 
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the inspection in FPV in real-time. The FPV video was viewed on an iPhone6 screen (12 cm [4.7 

in.]) by a spotter with the pilot.  

For a more realistic situation, the test-piece was attached to one of the roof frames of the 

SMASH lab. The lighting condition was dark and the distance between the pilot and the UAS was 

approximately 10 m (30 ft), which affected how comfortable the pilot was with the navigation. 

Figure 4.8 shows an image of the test-piece taken in the described situation. The camera was set 

to take images in a low lighting condition by changing the exposure. In addition, the 2X digital 

zoom option was used to compensate for the 30 cm (12 in.) camera distance, which was the closest 

the pilot was comfortable navigating the UAS to the target from so far way. The crack was not 

detectable in FPV view since the screen did not have enough resolution or size, but one can identify 

the crack after the inspection by looking at the pictures on a bigger monitor with higher quality. A 

high definition screen on a tablet would likely be adequate to see the crack in real-time. 

Goose Indoor Inspection 

Similar to the 3DR Iris and the DJI Mavic, the Goose was flown in the SMASH lab, E011. 

The test-piece was attached to the horizontal steel beam 3 m (10 ft) from the ground. The Goose 

was equipped with the Nikon camera as the main visual sensor and a flashlight as a lighting source. 

The closest camera distance for a safe inspection was roughly 70 cm (30 in.), therefore the research 

team zoomed the camera prior to the flight. The vehicle vibrations had a more severe effect on the 

captured pictures’ quality due to the use of zoom feature. Figure 4.9 shows the picture taken by 

the Goose in the Normal condition. Slight vehicle vibrations blurred the captured images 

considerably. The UAS, however, was able to provide several pictures in which the fatigue crack 

was detectable.  
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Figure 4.6 Photo of the Test-Piece Taken by 3DR Iris in the SMASH Lab, E009 

 
 

Figure 4.7 Photo of the Test-Piece Taken by DJI Mavic in the SMASH Lab, Normal Condition, 

E010 
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Figure 4.8 Photo of the Test-Piece Taken by DJI Mavic in the SMASH Lab, Dark Condition, 

E010 

 

Fatigue Crack 
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Figure 4.9 Photo of the Test-Piece Taken by the Goose in the SMASH lab, Normal Condition, 

E011 
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Indoor Inspection Conclusion 

The SMASH lab inspections, E009, showed that the 3DR Iris, equipped with a GoPro 

camera, is not a proper tool to aid bridge inspectors in detecting fatigue cracks. Lack of obstacle 

avoidance and altitude hold features in this UAS prevents the pilot from safely getting close 

enough to the target to meet the required camera distances for visual fatigue crack detection. 

Neither zoom nor image enhancement options are offered by the GoPro camera, which makes 

fatigue crack detection unlikely. The 3DR Iris, with specified configurations, is not recommended 

for fatigue detection in bridge inspections. The GoPro camera, as noted in the previous section, is 

also not recommended for inspection purposes. 

The DJI Mavic benefits from obstacle avoidance features (sonar and image based) and non-

GPS aided altitude hold features, which were a significant aid for UAS stabilization during the 

flight (E010). It can be maneuvered in a confined environment, such as between the girders of a 

bridge, due to its small size and sufficient stability. The obstacle avoidance features can prevent 

the UAS from getting too close to objects, which could cause issues when trying to get very close 

to see a defect. However, the required camera distance can roughly be achieved in a windless 

environment even without turning the obstacle avoidance on. The onboard camera of the DJI 

Mavic can adapt to different lighting conditions, including the Dark condition, by changing the 

exposure. It also benefits from a 2X digital zoom which increases the chance of fatigue crack 

detection in real-time. These features allow the camera to capture images in which the crack is 

detectable when viewed on larger and higher definition screens during or after the inspection. Of 

the UAS tested, the research team recommends the DJI Mavic with specified configurations for 

fatigue crack detection in bridge inspections, especially in areas with limited space. The DJI Mavic 

images were clear enough to identify the crack in the Normal condition in real-time. 
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The Goose provided acceptable images where the crack was detectable after the inspection, 

however, the UAS vibrations decreased image qualities considerably (E011). This will be an issue 

in all UASs when using zoomed cameras. The UAS’s lack of autopilot features in absence of GPS 

signals forced the pilot to increase the camera distance, therefore the camera had to be zoomed-in 

to capture images with detectable cracks. Zooming magnified the effects of mechanical vibration 

and led to blurry images, but adequate images could still be obtained. The minimum achieved 

camera distance during the inspection was roughly 70 cm (30 in.) which was more than twice the 

required camera distance. The use of the Goose for fatigue crack detection was successful, but 

requires a skilled pilot and open space for the flight. Table  shows the achieved camera distance 

by each UAS and the result of crack detection. 

Table 4.5 Inspection Results of the SMASH Lab Simulations 

UAS 
Lighting 

Condition 
Achieved Camera 

distance 
Detection in FPV 

(Realtime) 
Detection in Monitor 

(Postmortem) 

3DR Iris Normal 50 cm (20 in.) No Detection No Detection 

DJI 
Mavic 

Normal 20 cm (8 in.) Detection Detection 
Dark 25 cm (12 in.) No Detection Detection 

Goose Normal 
70 cm (30 in.) 

 (with 10X optical 
zoom) 

Not Available Detection 

Outdoor Bridge Inspections 

After the inspections in the SMASH lab, the research team tested UAS under a bridge to 

simulate real inspections, E012 and E013 (refer to appendix A). The test-piece was attached to 

girders of a bridge located on the west side of the Utah Water Research Laboratory at Utah State 

University. The aerial photo of the bridge is shown in Figure 4.10. The UASs were flown under 

this bridge, taking pictures of the test-piece with the purpose of fatigue crack detection on S001. 

This section represents the results of these inspections. The test-piece was placed on an interior 

girder and a light source used to provide different levels of illumination. 
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Figure 4.10 The UWRL Bridge 

3DR Iris Outdoor Inspection 

The results in the SMASH lab indicated this UAS was ineffective in fatigue crack 

detection, but the inspection was carried out on the UWRL bridge for a comparison, E012. The 

wind speed was reported at 32 km/h (20 mph) with maximum gust speed of 45 km/h (28 mph).(28) 

Figure 4.11 shows the daily temperature of the inspection day reported by KUTLOGAN25 weather 

station located 3.5 km (2.2 mi) away from the inspection location. Figure 4.12 and Figure 4.13 

provide information about the wind direction and wind and gust speed, respectively, from the same 

weather station. As expected, the 3DR Iris and GoPro camera were unable to provide images with 

sufficient quality for fatigue crack detection. The feasible camera distance was roughly 60 cm (24 

in.) since the UAS was dangerously moving with the wind and could not be controlled. Figure 4.14 

shows the image of the test-piece taken by this UAS in the Normal lighting condition. This image, 

and others like it, is unacceptable for nearly any kind of inspection. 
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Figure 4.11 Daily Temperature from January 10, 2017 at the UWRL Bridge from 

KUTLOGAN25 Station (Weather History for Logan 2017) 

 

 

Figure 4.12 Wind Direction from January 10, 2017 at the UWRL Bridge from KUTLOGAN25 

Station (Weather History for Logan 2017) 
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Figure 4.13 Wind Speed and Gust Information from January 10, 2017 at the UWRL Bridge from 

KUTLOGAN25 Station (Weather History for Logan 2017) 

DJI Mavic Outdoor Inspection 

The DJI Mavic was used to inspect the bridge on the same day as the 3DR Iris, E013. 

Despite the wind, the UAS was flown approximately 25 cm (10 in.) away from the test-piece which 

was close enough for the inspection purposes. The UAS’s stability in the gusting wind was 

adequate, capturing several images in which the fatigue crack was visible during the inspection 

(real-time in FPV and post-processing). By changing the exposure and focus features in the 

camera, the fatigue crack was visible in the Normal and the Bright lighting conditions in real-time, 

as shown in Figure 4.15 and Figure 4.16, respectively. The research team placed the test-piece in 

a very dark location under the bridge with surface illumination of 5 lx and several images were 

taken with the maximum exposure setting on the camera. It was not possible to see the crack in 

FPV during the inspection, but the crack was visible in the images after viewing them on a desktop 

monitor, as seen in Figure 4.17. With a larger FPV monitor, like a tablet, real-time detection is 

likely. The test-piece was also attached on a girder bottom flange to determine the camera angle 

effects on the crack detection. Although the fatigue crack was not detectable in real-time, one can 
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review the captured images on a bigger monitor to see the fatigue crack. One of these images is 

shown in Figure 4.18. This image is significant considering that the tilt-angle of the camera on the 

DJI Mavic is limited to 30 degrees. 



64 

 

 

 

 
Figure 4.14 Photo of the Test-Piece Taken by 3DR Iris, UWRL Bridge, Normal Condition, E012 

 

 
 

Figure 4.15 Photo of the Test-Piece Taken by DJI Mavic, UWRL Bridge, Normal Condition, 

Normal Camera Angle, E012 
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Figure 4.16 Photo of the Test-Piece Taken by DJI Mavic, UWRL Bridge, Bright Condition, 

Normal Camera Angle, E012 

 

 
 

Figure 4.17 Photo of the Test-Piece Taken by DJI Mavic, UWRL Bridge, Dark Condition, 

Normal Camera Angle, E012 
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Figure 4.18 Photo of the Test-Piece Taken by DJI Mavic, UWRL Bridge, Bright Condition, 

Oblique Camera Angle, E012 

The DJI Mavic can be used for fatigue crack detection successfully. This UAS provides 

detailed images in all lighting conditions at distances as far as 25 cm (10 in.), often in FPV in real-

time, but certainly on a large monitor after the inspection.  

Goose Outdoor Inspection 

The bridge clearance was less than 2 m (6.5 ft), which is too close to the ground and water 

for VTOL UAS with the power of the Goose, where ground effects would affect flight stability. 

The Goose would need at least 2.5 meters, plus additional space for maneuvering, so the Goose 

was not tested under the bridge. 
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Outdoor Inspection Conclusions 

The outdoor bridge inspection experiments showed that the 3DR Iris is an ineffective UAS 

for fatigue crack detection under the bridge due to both camera and vehicle weaknesses, E012. The 

camera lacked exposure adjustments, focus, and zoom features. The UAS was affected by windy 

conditions, which decreases the quality of the captured images. GoPro cameras are commonly 

used with UAS; however, they are not recommended to detect fine defects in under-bridge 

inspections. In addition, the UAS was very sensitive to the wind and acted particularly unstable, 

reducing safety for the UAS and pilot.  

The DJI Mavic showed promising results for fatigue crack detection in both real-time and 

post-inspection (E013). The camera was able to capture pictures with good detail in the Normal 

and the Bright conditions since the exposure and focus of the camera can be adjusted for clearer 

images of the fatigue crack. The 2X digital zoom allowed the UAS to maintain a safe distance 

while capturing these pictures. The UAS was stable without using obstacle avoidance and captured 

high quality images. The camera’s performance in the Dark condition was also successful and the 

crack was visible in this condition. The camera’s vertical rotation is limited to 30 degrees, which 

can make upward inspections challenging, but images taken from the test-piece demonstrated the 

ability of this UAS to be used for fatigue crack detection when the camera’s point-of-view is not 

orthogonal to the test-piece.  

The Goose could not be tested under the UWRL bridge because there was not enough 

vertical clearance between the ground and bridge. Lack of free space around the UAS can cause it 

to lose stability due to ground effect turbulence. Ground effect turbulence is the increased lift force 

and decreased drag that is experienced when the rotors are too close to the ground, and the 

associated turbulence, adversely affects manual and automated control.  
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The DJI Mavic was as an effective tool for fatigue crack detection in the outdoor 

inspections. This UAS is the most stable without GPS and holds position in in strong winds. The 

built-in camera on this UAS can capture images where the crack is detectable even in different 

lighting conditions by adjusting the light exposure, which is critical for low-light scenario. The 

camera’s small size allows the DJI Mavic to fly in confined environments, while the stability of 

the UAS gives the minimum possible camera distance among three tested UASs. 

Table  summarizes the level of success each UAS had with fatigue crack detection in 

different lighting conditions under the UWRL bridge using a subjective rating system of good, fair 

or poor.  

Table 4.6 Subjective UAS’s Performances Under the UWRL Bridge 

UAS Camera Minimum Safe Camera Distance Dark Normal Bright 

3DR Iris GoPro Hero 4 60 cm (24 in.) Poor Poor Poor 

DJI Mavic On Board DJI 25 cm (10 in.) Fair Good Good 

Autonomous Fatigue Crack Detection 

The captured images in previous sections can be analyzed using image processing 

techniques for autonomous or semi-autonomous crack detection. The texture of the test-piece was 

a major obstacle for any autonomous detections (as it was for visual inspection), thus several edge 

detection techniques were implemented in a computer program (see Appendix C) and tested on 

the images taken from E014 (other images were attempted, only those from the DJI Mavic were 

successful) to determine the level of success of each technique. See Table 4.7 for the level of 

success of each detector. The most successful method was the Laplacian of Gaussian (LoG) edge 

detector. The proposed algorithm included applying a LoG filter on the captured images. The 

resultant image after applying the LoG filter was an image with intensified edges. This image is 

called the edge image. Then, the edge image was converted to a binary image, with 1s assigned to 
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the detected edge pixels and 0s to everything else. The detected edges were then superimposed on 

the original image for comparison and visual augmentation. The execution time of the LoG 

program was less than 1 second per image which would allow inspectors to use this algorithm in 

near real-time inspections. 

Table 4.7 Performance of the Implemented Edge Detectors on E014 

Edge Detector Average Detected crack’s length (%) Level of success 

Canny 25  Poor 

Sobel 55  Medium 

LoG > 80  Good 

Roberts 20  Poor 

Gaussian High-pass filter < 10  Poor 

 

Image Processing Using the 3DR Iris Photographs 

The images captured by this UAS did not represent the fatigue crack as strong edges, thus, 

the proposed algorithm failed to detect the crack. The only edges detected from this UAS images 

were the edges of the test-piece itself.  

Image Processing Using the DJI Mavic Photographs 

The image processing results were successful on the images taken by the DJI Mavic in the 

SMASH lab. The image shown previously in Figure 4.7 was processed by the proposed LoG filter. 

In the final image, the fatigue crack was detected along with the edges of the test-piece, as seen in 

Figure 4.19. In practice, the edges of the test-piece do not exist and the algorithm will detect only 

the fatigue crack along with some surface clutter. The LoG algorithm was able to detect the 

majority of the crack length in this figure.  

The same algorithm was executed on the images taken by DJI Mavic during the UWRL 

bridge inspection. Figure 4.20 shows the result of the crack detection method on one of the images 
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taken during the UWRL bridge inspection, previously shown in Figure 4.16. The edges of the test-

piece and its shadow border were picked in the final image, and most of the crack’s length was 

also detected. Additional filtering can remove the detected edges from the test-piece and shadow 

edges. 

Image Processing Using the Goose Photographs 

The images taken by the Goose in the SMASH lab were not clear enough because the 

UAS’s vibrations were amplified by the optical zoom. Therefore, the proposed algorithm was 

unable to detect the fatigue crack autonomously in these images, even though the crack was visible 

to the human eye. Only the edges of the test-piece were reported as the major edges in the resultant 

images, since they consisted of stronger pixel intensity gradients compared the fatigue crack.  

 

 
 

Figure 4.19 The Detected Crack Using Image Processing Techniques on the SMASH Lab Images 

(Laplacian of Gaussian), E014 
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Figure 4.20 The Detected Crack Using Image Processing Techniques on the UWRL Image 

(Laplacian of Gaussian), E014 

Autonomous Fatigue Crack Detection Conclusion  

The research team proposed an image processing technique to find the fatigue cracks 

autonomously in the captured images by three UASs, E014. The 3DR Iris and the Goose images 

did not present the fatigue crack as a strong edge nor did it capture the crack at all, therefore, the 

proposed method was unable to locate the crack in their images. The pictures captured by the DJI 

Mavic worked better with the algorithm and the fatigue crack was detected, along with the edges 

of the test-piece. The research team expects that the LoG fatigue crack detection method will detect 

cracks most effectively on structures with similar crack sizes as the test piece since the edges of 

the test-piece will not interfere with the crack detection results (Dorafshan 2017c). This technique 

is likely most useful as an augmentation tool for inspectors and has the potential to be used in near 

real-time. 
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Passive Thermal Fatigue Crack Detection 

In theory, the presence of surface cracks changes emissivity of any surface. Thermal 

cameras read surface emissivity in different locations and convert them into temperature by taking 

several parameters into account (Incropera 1985). Difference in emissivity values in locations with 

surface cracks cause discontinuity in surface temperature distribution and can be used to detect 

defects in thermal images. Thermography can be carried out with an external heating and cooling 

source (active) or without an external heating/cooling source (passive).  

The previous sections showed that the achievable camera distance during UAS bridge 

inspection was roughly 60 cm (25 in.) to 75 cm (30 in.). To simulate the inspection of fatigue 

cracks using UASs, the test pieces were actively heated up by the sunlight and monitored using 

two thermal cameras at a distance of 75 cm (30 in.) from the two test-pieces (E015 and E018). The 

research team placed the test-pieces under direct sunlight for a few hours and then monitored the 

heat loss of the test-pieces from both sides (A and B, see Table ) after removing them from direct 

sunlight. The research team analyzed all images after the experiment using ThermaCAM 

Researcher Software for better crack detection (FLIR Systems 2017). 

The first thermal camera was a FLIR SC 640 with 1C sensitivity. The research team 

selected this camera because it had similar sensitivity to conventional thermal cameras compatible 

with most commercial UASs, E015 and E016. Figure 4.21 and Figure 4.22 show the thermal 

images taken from the first and second test-piece, respectively, while they were losing heat. As 

seen in the thermal images, fatigue crack detection was not achieved with this method. 

The research team repeated the experiment using an FLIR E8 camera that has 0.2C 

sensitivity to conduct experiments E017 and E018. Figure 4.23 shows the captured thermal image 

from the side A of the first test-piece. The crack, located in the 8 o’clock orientation, was not 
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explicitly detected in the thermal image. However, a cold region can be detected around the crack 

location.  

Table 4.8 Fatigue Crack Specimen Side Designation 

Specimen Side A Side B 

S02 

  

S03 

  

 

 

Figure 4.21 Thermal Image from the First Test-Piece, Passive, E015 

Test-piece  
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Figure 4.22 Thermal Image from the Second Test-Piece, Passive, E016 

Figure 4.24  is an image taken of the side A of the second test-piece while it was losing 

heat. The image has a temperature gradient of 35C (64F). The fatigue crack on this specimen 

was deeper, thicker, and longer than the first test-piece, separating the test-piece into two regions: 

cold and warm. The crack was located at the boundary of these two regions and can be detected in 

the thermal image. Although the crack detection in the second test-piece was more successful than 

the first one, the temperature distribution may have been affected significantly by the yellow paint 

strip.   
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Figure 4.23 Thermal Image of the Side A of Test-Piece 1, 75 cm (30 in) Camera Distance, E017 

 

 
 

Figure 4.24 Thermal Image of the Side A of Test-Piece 2, 75 cm (30 in) Camera Distance, E018 

  

Fatigue Crack’s 
Location  

 

Cold Region  

 

Fatigue Crack’s 
Location  
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Active Thermal Fatigue Crack Detection 

This section provides the results of active thermography to detect the fatigue cracks on test-

pieces, experiments E019 and E020. Each test-piece was attached to a mount by a magnet. The 

heat-gun was placed on one side of the examined specimen while the thermal camera, mounted on 

a tripod with 5 cm (2 in.) distance to the test-piece, monitored the other side of it. Once the 

temperature on the monitored surface reached to roughly 275oC (530oF), the heat gun was turned 

off and the thermal camera took pictures while the test-piece lost heat at 5-second intervals. In the 

figures below, the image most effectively exhibiting the fatigue crack is presented. The camera’s 

distance from the specimen was much smaller and temperature gradients were higher in this set of 

experiments than the passive case (which was simulating a UAS inspection). The distance between 

the thermal camera and the test-pieces was 5 cm (2 in.). The thermal camera monitored each side 

of each test-piece after the other side was heated by the heat gun in the lab. The thermal camera 

took several thermal images of the test-piece at different temperatures, providing different 

temperature gradients to locate the fatigue cracks.  

Figure 4.25 shows the thermal image taken from the side A of the first test-piece and has a 

thermal gradient of 93C (167F), E019. The passive thermal inspection of this side was 

unconvincing, but the crack can be seen in the close-range thermal image acquired with a higher 

temperature gradient. Figure 4.26 shows the temperature profile along a section line passing over 

the crack on the test-piece. The profile hit its temperature peak approximately at the crack’s 

location since it was losing more heat than the surrounding material.  

The side B of the first test-piece showed more promising results in the thermal inspection, 

as seen in Figure 4.27, E019. The fatigue crack was distinct because its thermal loss was higher 

than its surroundings. The cold region in this image corresponded to the visually darker region on 
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the center of the test-piece (left inset visual image in Figure 4.27, which exhibits a different 

temperature distribution than the rest of the test piece). The temperature profile along with a line 

is shown in Figure 4.28. The fatigue crack location was consistent with a local maximum in the 

profile graph.  

The fatigue crack on test-piece number two was easier to see visually. Thermally the crack 

seemed separated from the second test-piece into two parts in terms of surface temperatures when 

examined in experiment E020. Figure 4.29 shows the thermal image from the side A of this test-

piece with temperature gradient of 125C (225F), E020. The top part of the test-piece was colder 

than the bottom part due to the presence of the fatigue crack, which was consistent with the passive 

result. The other irregularity in temperature distribution occurred in the middle of the thermal 

image. Figure 4.30 shows the temperature profile of side A of the second test-piece along with a 

line passing over the fatigue crack. The research team observed two temperature distribution 

anomalies in this figure, which were consistent with the fatigue crack and the paint strip locations. 

These abnormalities were presented with local extrema; the local maximum for the fatigue crack 

and the local minimum for the paint strip.  

Finally, the thermal camera monitored side B of the second test-piece, and one can detect 

the fatigue crack in the thermal image with 57C (103F) temperature gradient, see Figure 4.31 

(E020). Extracting the temperature profile of the test-piece along a line passing over the fatigue 

crack (often called a thermogram), the fatigue crack location was consistent with an irregularity in 

the surface temperature distribution in Figure 4.32. 
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Figure 4.25 Thermal Image of the Side A of Test-Piece 1, 5 cm (2 in) Camera Distance, E019 

 

 
 

Figure 4.26 Temperature Along the Profile Line for the Side A of Test-Piece 1, 5 cm (2 in) 

Camera Distance, E019 
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Fatigue Crack’s 
Location  
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crack 



79 

 

 

 

 
 

Figure 4.27 Thermal Image of the Side B of Test-Piece 1, 5 cm (2 in) Camera Distance, E019 

 

 

Figure 4.28 Temperature Along the Profile Line for Side B of Test-Piece 1, 5 cm (2 in) Camera 

Distance, E019 

32.3°C

100.7°C

Fatigue Crack’s 
Location  

 

Location of fatigue 
crack (Hot-region) 

 



80 

 

 

 

 

 
 

Figure 4.29 Thermal Image of the Side A of Test-Piece 2, 5 cm (2 in) Camera Distance, E020 

 

 
 

Figure 4.30 Temperature Along the Profile Line for Side A of Test-Piece 2, 5 cm (2 in) Camera 

Distance, E020 

198.0°C
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Figure 4.31 Thermal Image of the Side B of Test-Piece 2, 5 cm (2 in) Camera Distance, E020 

 

 
 

Figure 4.32 Temperature Along the Profile Line for the Side B of Test-Piece 2, 5 cm (2 in) 

Camera Distance, E020 

68.4°C

92.8°C

Fatigue Crack’s 
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Thermal Fatigue Crack Detection Summary 

The research team investigated the feasibility of fatigue crack detection using passive and 

active thermography in this section. Two thermal cameras with 75 cm (25 in.) camera distance 

took thermal images of the test-pieces while the test-pieces were losing heat after being exposed 

to sunlight. Thermal images from the first thermal camera did not provide any indications of 

fatigue cracks due to the camera’s sensitivity (+/- 1C), E015 and E016. This camera had similar 

sensitivity to most thermal cameras compatible with UASs. The research team repeated the 

experiment using a more sensitive camera (+/- 0.2C) in experiments E017 and E018. The results 

were promising, but not conclusive with the studied proximities. Therefore, the research team 

carried out active thermography on the test-pieces at a much closer range, E019 and E020. The 

test-pieces were investigated with 5 cm (2 in.) camera distance and more heat input. The active 

experiment results verified the passive results, suggesting the possibility of fatigue crack detection 

using thermal images. Table  presents a summary of the thermal crack detection experiments 

(E015-E020). 

Table 4.9 Summary of Thermal Crack Detection Requirements 

Experiment ID Active/Passive Specimen ID Camera Detection Distance, cm 

E015 P S04 FLIR SC 640 - 

E016 P S05 FLIR SC 640 - 

E017 P S04 FLIR E8 - 

E018 P S05 FLIR E8 - 

E019 A S04 FLIR E8 5 

E020 A S05 FLIR E8 5 
 

To apply this methodology on UASs, there are certain barriers that need to be overcome. 

First, the pixel resolution of thermal images is usually considerably less than the visual images and 

the UAS must be flown very smoothly and closely to capture useful thermal images. Second, the 
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FLIR E8 thermal camera, which provided promising results for both passive and active cases, is 

not mountable on UASs. UAS compatible thermal cameras with a sensitivity of +/- 0.2C are 

considerably more expensive than conventional cameras due to size and weight. Third, even with 

an expensive and accurate camera, fatigue crack detection would likely still require active 

thermography, which is difficult or impossible to perform with current off-the-shelf UASs. 
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Controlled Fatigue Crack Detection Conclusions  

In this chapter, the research team presented the investigation into the feasibility of fatigue 

crack detection using visual and thermal images. 

The research team investigated the feasibility of fatigue crack detection using two remote 

sensing methodologies: visual and thermal images. Three UASs were used to capture images of a 

fatigue crack. These images helped the research team provide crack detection requirements, E006 

through E008, in terms of lighting condition and camera distance to investigate the feasibility of 

fatigue crack detection in GPS-denied environments in a no wind situation and to assess the UAS-

based fatigue crack detection with GPS-denied navigation under a bridge.  

The requirements for fatigue crack detection using three visual cameras (not using the 

UASs) in terms of camera distance and lighting conditions, in highly controlled office conditions, 

were determined as follows: 

 Only the DJI Mavic camera took pictures with recognizable cracks in all lighting 

conditions, E007.  

 Based on the results from the Nikon and DJI Mavic camera (E007 and E008), minimum 

surface illumination of 200 lx was recommended to capture proper images, even though 

the DJI Mavic was successful at lower lx. It is acknowledged that this may not be feasible 

in all situations. UAS mounted lights, or handheld spot lights, or both can be used 

effectively to increase surface illumination. 

 The furthest camera distance for an image with visible fatigue crack was achieved with the 

Nikon camera in the Normal condition: 30 cm (12 in.) in E008. 

The research team used three UAS to capture images of a test-piece with a known fatigue 

crack. This was done in the SMASH lab using three UAS: the 3DR Iris, equipped with a GoPro 
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camera; the Goose, equipped with a Nikon camera; and the DJI Mavic, E009 through E011. The 

images from this semi-realistic inspection were used to determine if fatigue crack detection using 

UASs is feasible. The findings from this experiment under GPS-denied, but environmentally 

controlled conditions are outlined below: 

 Crack detection in DJI Mavic images was feasible in all lighting conditions, E010. Crack 

detection was enhanced by the DJI Mavic’s superior stability, which allowed the UAS to 

reach a closer camera distance to the inspected piece, and the camera’s exposure 

adjustment for darker scenes.  

 The 3DR Iris, equipped with the GoPro camera, was not stable enough to provide the 

required camera distance in the absence of GPS signals, and therefore was not 

recommended for this task, E009. 

 The inspection results of the Goose, equipped with the Nikon camera, allowed the detection 

of the fatigue crack in the test piece. The camera distance was 70 cm (35 in.) and the camera 

was pre-zoomed, however the images were blurry due to vibrations, E011. 

The UAS were used to inspect the test piece underneath the UWRL bridge, to find the 

fatigue crack in an uncontrolled environment (E012 and E013): 

 Due to 32 km/h (20 mph) wind speed with maximum gust speed of 45 km/h (28 mph) the 

minimum safe camera distance for the 3DR Iris was 60 cm (24 in.) in E012, which was 

greater than what was achieved in the SMASH lab, 50 cm (20 in.), and there was no 

detection in the images. 

 The pilot was able to provide a similar camera distance to that in the SMASH lab 

experiment with the DJI Mavic, 25 cm (10 in.) in experiment E013. 

 Only the DJI Mavic pictures showed the fatigue crack (E012). 
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 The DJI Mavic showed the fatigue crack in all lighting conditions (E012). 

 The Goose was not flown due to the low camera distance of the bridge. 

Table  presents a summary of the visual detection requirements for the fatigue crack in the 

test-piece using the DJI Mavic for each condition in the simulated environment under the bridge. 

Table 4.10 Summary of Visual Fatigue Crack Detection Requirements  

Location Camera Distance to specimen for detection (cm) Illumination (lx) 

office 

GoPro Hero 4 10-20 100-250 

DJI built-in 

≤ 15 20-100 

≤ 20 100-250 

≤ 25 250 and more 

Nikon ≤ 30 100-250 

SMASH lab 

GoPro Hero 4 none none 

DJI built-in 
≤ 20 20-100 

≤ 25 100-250 

Nikon ≤ 70 100-250 

UWRL 

GoPro Hero 4 none none 

DJI built-in 

≤ 25 20-100 

≤ 25 100-250 

≤ 25 250 and more 

Nikon Not attempted 
 

Finding fatigue cracks using image processing techniques was feasible when the research 

team used the DJI Mavic to capture the images and used the LoG edge detector as the primary 

image processing algorithm, E013. The experiment on the UWRL bridge showed that the DJI Mavic 

was the best device of the three UASs to help a bridge inspector find the fatigue cracks. This UAS 

provides images with visible fatigue cracks, even in different lighting conditions. The 2X digital 

zoom and the ability to change the camera exposure enhanced the quality of the FPV real-time 

inspection. Also, the sonar altitude hold sensor stabilized the UAS, even during pilot described 

undesirable wind conditions.  
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The Goose, as equipped, was sufficient for finding some cracks in the laboratory, but its 

images exhibited much blurrier pictures, which was thought to be detrimental to the inspection 

process. Additionally, its control hardware, software, and size made the UAS more difficult to 

control compared to the DJI Mavic. The advantage of the Goose as a UAS is its payload capacity 

and with additional tuning of its flight characteristics, the Goose may eventually be considered 

feasible when additional sensors are mounted on the UAS. Overall, the limitations of the Goose 

were such that it did not perform on the same level as the off-the-shelf DJI Mavic. 

The inspection simulations in the SMASH lab and at the UWRL bridge showed that the 

3DR Iris, equipped with the GoPro camera, was unable to provide images with visible fatigue 

cracks. While much more economical and readily available, this UAS is not recommended for 

image-based fatigue crack detection.  

The research team also investigated the feasibility of fatigue crack detection using passive 

and active thermography and two thermal cameras. Table  contains a summary of the passive and 

active infrared thermography experiments investigating fatigue crack detection. 

Table 4.11 Summary of Infrared Thermographic Inspection Experiments 

Experiment 
ID 

Active or 
Passive 

Specimen 
ID 

Thermal 
Camera 

Distance, cm 
(in.) 

Detection 
(Y/N) 

E015 Passive S04 FLIR SC 640 75 (30) N 

E016 Passive S05 FLIR SC 640 75 (30) N 

E017 Passive S04 FLIR E8 75 (30) 
Not 

Conclusive 

E018 Passive S05 FLIR E8 75 (30) 
Not 

Conclusive 

E019 Active S04 FLIR E8 5 (2) Y 

E020 Active S05 FLIR E8 5 (2) Y 
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Even though the fatigue cracks were detectable in thermal images taken by the more 

sensitive camera, thermal fatigue detection using UASs is best with: 

 Active thermography. 

 Camera distance of 5 cm (2 in.).  

 +/- 0.2C sensitivity. 
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Chapter 5: UAS Bridge Inspection in Ashton, Idaho 

Introduction  

This section of the report presents the findings of a bridge inspection using UAS 

technology for fatigue crack detection. The bridge, located in Ashton, Idaho, carries Ashton-Flagg 

Ranch road traffic over the Fall River (ITD Bridge Key 21105). Figure  5.1 shows an aerial image 

of the bridge, captured by a 3DR solo UAS. The 3DR Solo is a personal UAS owned by an 

AggieAir pilot and was used to provide aerial and perspective images of the bridge after the under-

bridge inspection was carried out with the DJI Mavic (Aggieair 2017). The goal of the inspection 

was to investigate the feasibility of using UASs for fatigue crack detection.  

 
 

Figure 5.1 Aerial Image Captured by 3DR Solo (Courtesy of Dan Robinson) 

Fall River 

NORTH  
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The inspection took place on March 22, 2017, beginning at 11:30 am. According to the 

nearest weather station to the inspection site, KIDASHO8, which is 35 km (22 mi) away, the 

temperature was 10C (50F), Figure 5.2. Maximum wind speed was 25 Km/h (15 mph). However, 

wind gust data was not available under the bridge. Up to 40 kmh (25 mph) gusts were experienced 

locally (estimated by pilot and inspector) due to river channel and bridge geometry. Figure 5.3 and 

Figure 5.4 present the wind direction, wind speed and gust information of the inspection day, 

respectively, from the same weather station. Interestingly, windspeed increased just as the 

inspection started. The inspection lasted until 4 pm, with approximately 90 minutes of flight time, 

while the inspection team was standing on the Eastern bank of the river (the ground station is 

shown in Figure 5.1).  

The bridge consisted of two main longitudinal frames on the Northern and Southern sides 

(West-East orientation), braced by 15 perpendicular transverse floor beams. Figure 5.5 shows one 

of the bridge frames on the North side. The floor beams were connected to the girder webs through 

gusset plates. The gusset plates of each beam were welded to the web of the main frame on each 

side, as seen in Figure 5.6. Because of the structural system, this bridge is considered a fracture 

critical system. 

Because of the presence of fatigue cracks, the bridge is on a 12-month inspection cycle, 

but the cracking is not in the primary frame members. According to the inspection report, the total 

steel cracking in the floor beams is 3 m (10 ft) in length, in Condition State 3, and is in floor beams 

4, 5, 6, 10, 11 and 12. During UBIT inspections, the inspectors found numerous hairline cracks in 

welds at the floor beam connections. However, no cracks have propagated into the girder webs. 

Magnetic particle testing verified the crack sites during the 2006 UBIT inspection with no new 

sites found during the 2008, 2010, 2012, 2014, 2015, or 2016 inspections. The NBI superstructure 
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condition rating is 5. The susceptible region for fatigue crack initiation and growth was the top 

portion of the welded connection between the girder’s web and floor beam. Figure 5.6 shows one 

of these regions. Inspectors observed fatigue cracks in susceptible regions in the previous manned 

inspections. 

Figure 5.2 Daily Temperature from March 22, 2017 in Ashton from KIDASHO8 Station 

(Weather History for Ashton 2017) 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0:00 4:48 9:36 14:24 19:12 0:00

Te
m

p
er

at
u

re
 (

F)

Time



92 

 

 

 

 

Figure 5.3 Wind Direction Information from March 22, 2017 in Ashton from KIDASHO8 Station 

(Weather History for Ashton 2017) 

Figure 5.4 Wind Speed and Gust Information from March 22, 2017 in Ashton from KIDASHO8 

Station (Weather History for Ashton 2017) 
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Figure 5.5 Northern Girder of the Fall River Bridge. 

 

 
 

Figure 5.6 Floor Beam Connection to Main Girder. 

Typical Fatigue 

Crack Susceptible 

Region  
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The research team used the DJI Mavic for the inspection. The built-in sonar sensors 

installed on the bottom of the UAS gave the pilot substantial control in absence of GPS signals. 

However, when the UAS was flown over the river it tended to follow the river current, causing 

considerable instability. This is a known limitation for UAS mounted sonar. For this reason, the 

research team only inspected the first four Eastern floor beams and no over water inspections were 

carried out. The pilot flew the UAS under the bridge, inspecting 12 locations on the floor beams, 

two girder splices, the Southern girder web, the Southern concrete barrier, the bottom flange 

connection to the web on the Southern girder, and the bottom flange of the Southern girder. Figure  

5.7 shows the UAS flying under the bridge and approaching a fatigue crack susceptible location. 

A handheld spotlight (Stanley FatmaxSL10LEDSL, light emitting diode, 750 lumens) held by the 

inspector, served a dual purpose: as a pointer to guide the pilot to the locations of interest and to 

provide illumination. The minimum achievable camera distance was roughly 50 cm (20 in.). 

However, due to the wind turbulence under the bridge, the pilot kept a distance of 75 cm (30 in.) 

for most of the inspection.  
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Figure 5.7 UAS Flying Under the Bridge. 

Inspection Images 

The inspection images were taken at different locations of the bridge: floor beams, girder 

splice plates, girder bottom flange web, concrete barrier, girder bottom flange, girder web, etc 

(E021 through E036). The total number of pictures taken by the DJI Mavic was 162. For brevity, 

only a handful are presented and discussed in this report, but all are available through the drop box 

link presented in the introduction.  

Figure 5.8 shows schematic inspection locations. Each location has an experiment ID. The 

four floor beams from the East in the location of connections to the girders were inspected using 

the DJI Mavic. The main goal was to capture close-up images from the plate weld to the frame’s 

web at both ends of these beams. ITD previously performed physical inspections in which they 
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located two fatigue cracks on the fourth-floor beam. These cracks were marked by previous 

inspectors along or over the length using a black marker, with tick marks at the crack ends.  

 

Figure 5.8 Plan View Drawing of the Bridge and Experiment Numbers of Inspection Locations. 

Figure 5.9 shows the DJI Mavic image from the first floor beam (E021). The research team 

did not identify a fatigue crack in this image during the FPV inspection or in post-processing. 

Condition of the paint, minor surface corrosion, and qualitative assessment of the structural 

members are among the information that may be useful for the inspector. The picture from the 

Southern corner of this floor beam presented no detectable fatigue cracks as seen in  

 

Figure 5.10 (E022). The weld in this image is covered with debris (spider sacks or webbing) 

which conceal the possible fatigue crack.  

Tilting the camera gimbal, the UAS was able to capture images from the girder’s bottom 

flange, web, and gusset plate weld connections to the floor beams (E023). Figure 5.11 is one of 

these images taken from the location of the second floor beam (Southern side connection). As seen 
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in the image, no surface defect was visible. The inspection images taken from the second floor 

beam did not show any signs of fatigue cracking, however, the UAS detected minor deck spalling 

on the top of the girder on the Southern corner as shown in Figure 5.12. Debris covered the 

probable location of fatigue crack and made detection impossible (E024). The inspection images 

on the third floor beam were similar to the second. Figure 5.13 shows the surface rust on the top 

flange of the Northern girder (E027).  

The weld connection of the fourth floor beam had two fatigue cracks, marked in black, on 

each end. The original image from the Northern end of this beam is shown in Figure 5.14 (E031). 

The extension of the crack was marked on the weld, obscuring the crack. Figure 5.15 shows the 

same image after zooming with an indication to locations of the crack and the marker lines (E031). 

The presence of the marker lines prevented the research team drawing an absolute conclusion on 

whether or not the fatigue crack was detectable in this image, however, there does not seem to be 

extension of the crack past the tick mark. 

 



98 

 

 

 

 
 

Figure 5.9 First Floor Beam on East, Northern Corner, No Noticeable Crack, E021 

 

 

 

Figure 5.10 First Floor Beam on East, Southern Corner, Debris on the Weld, E022 
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Figure 5.11 No Cracks on Second Floor Beam on East, Southern Corner, E023 

 
 

Figure 5.12 No Cracks on Second Floor Beam on East, Southern Corner, Minor Deck Spalling, 

E024 
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Figure 5.13 Third Floor Beam on East, Mild Rust, Northern Corner, E027 

 
 

Figure 5.14 Defect (Crack) on the Fourth Floor Beam, E031 
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Figure 5.15 Zoomed Image from the Fatigue Crack, E031 

On the Southern corner, the fatigue crack was seemingly shorter than the fatigue crack on 

the Northern corner of the fourth floor beam, according the marker lines, as shown in Figure 5.16. 

Similar to the Northern end, ITD inspectors already marked the location of the fatigue crack, and 

no fatigue crack is visible (E032). It does seem that ITD did not mark the length of the crack the 

same way as the other, but no crack is detectable prior to the tick marks. This indicates that the 

UAS was not close enough or photos were not of sufficient quality to find the crack. Figure 5.17 

shows the zoomed image from the location of the fatigue crack (E032).  

The research team inspected gusset plate connections to the web of girders using the UAS, 

and several images were taken of them (E032). No signs of fatigue cracks were found in these (see 

Figure ). 

The research team inspected two splice plates (E033 and E034), one on each girder, using 

the UAS. The UAS scanned the plates from the top to the bottom of the splices for defects. Figure  

Crack  

Marker  
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5.19 shows minor corrosion on the top flange splice on the Northern girder. The splice plate was 

in a good shape and the captured images showed no indication of defect (E033).  

The web splice plate and the nuts on the Southern side girder had minor surface rust as 

shown in Figure 5.20 (E034). The rest of the plate was seemed to be sound. 

Inspection images from the bottom of the Southern concrete deck overhang and the barrier 

showed possible delamination and efflorescence (E035), as shown in Figure 5.21. The UAS 

captured a side view of the girder, as seen in Figure 5.22, which shows cracks and possible 

delamination (E036).  

Finally, the UAS scanned the bottom flange of the Southern girder. Except for mild surface 

corrosion, the bottom flange was in a sound condition, as seen in Figure 5.23. The concrete deck 

efflorescence was visible as well on the right side of this image (E035 and E036).  

Image Processing and the Inspection Images 

The research team applied image processing techniques on the images for autonomous 

defect (fatigue crack) detection (E037). However, the fatigue cracks were not explicitly visible in 

the inspection images before image processing. For crack detection in this dataset, the research 

team applied the customized LoG filter developed in Chapter 4 to the inspection images. Figure  

5.24 shows the superimposed detected edges on the original image. The algorithm detected the full 

length of the marker lines along with the edges of the structural members. The superfluous edges 

could be removed with additional filtering effort. The presence of marker lines interfered with the 

program performance in crack detection. Therefore, no certain conclusions regarding the 

program’s fatigue crack detection capabilities can be made.  
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Figure 5.25 shows the results of the proposed image processing technique on an image 

without fatigue cracks. Since there were no cracks and therefore no marker lines, no detection was 

reported on the susceptible region. The members’ edges were detected by the program.  

UAS Fatigue Crack Detection Comparison to Manned Inspections 

The research team was unable to detect fatigue cracks in the inspection images; therefore, 

an actual comparison cannot be performed. However, the marker lines were clearly visible in the 

images of fatigue cracks. The inspection results cannot be used to draw a solid conclusion about 

the ability of UASs for fatigue crack detection.  

 
 

Figure 5.16 Defect (Crack) on the Fourth Floor Beam, Southern Corner, E032 
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Figure 5.17 Zoomed Image from the Fatigue Crack on the Fourth Floor Beam, Southern Corner, 

E032 

 
 

Figure 5.18 No Defects (Crack) on the Fourth Floor Beam, Southern Corner, Bottom Flange 

Weld, E032 

 

Crack  
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Figure 5.19 Minor Corrosion on Top of the Northern Girder Splice (First Splice from East), 

E033 

 
 

Figure 5.20 Minor Corrosion on the Plate and Nuts, Southern Girder Splice (First Splice from 

East), E034 
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Figure 5.21 Cracks, Possible Delamination, and Efflorescence on the Southern Bearing, E035 

 
 

Figure 5.22 Cracks and Possible Delamination on the Southern Barrier, E036 
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Figure 5.23 Minor Corrosion on Bottom Flange of the Southern Girder, E035 and E036 

 
 

Figure 5.24 Image Processing on Captured Image with Crack, E037 

 

Detected Marker 

Lines  

No Detection 
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Figure 5.25 Image Processing on Captured Image without Crack, E037 

Conclusions from the Fall River Bridge Inspection 

The research team inspected an in-service bridge in Ashton, Idaho using a DJI Mavic UAS. 

The main goal of the inspection was to detect existing fatigue cracks. Twelve locations on the floor 

beams, two splice plates, one concrete barrier, one girder web, and one girder bottom flange were 

among the locations the UAS covered in this inspection.  

Reviewing the UAS images, the research team concluded the following:  

 UAS images capture concrete cracks, delamination, efflorescence, minor surface rusting, 

and poor paint conditions (E033 through E036). 

 Known fatigue cracks were not visible in captured images (E031 and E032). 

 Marks, drawn lines, spider webs, water stains, and unknown debris will hinder the detection 

of fatigue cracks using only visual images (E031 and E032). 

 Fatigue crack detection success is limited by camera capability and how close the UAS can 

get to the inspection location in the under-bridge environment. 

No Detection 
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 The UAS fatigue crack detection on the in-service bridge was unsuccessful. 

Reviewing the flight performance, the research team concluded: 

 Wind speeds of 25 Km/h (15 mph) with gust speed of 40 kmh (25 mph) played a significant 

role in achieving the desired camera distance. 

 Inspection of all floor beams by UAS was not possible since the UAS could not be 

controlled over the water flowing in the river (downward sonar sensor limitation).  

o Many UASs use this feature, which should be considered in future UAS 

inspections over water. With most UAS, this feature can be turned off, but 

performance will either further deteriorate or be ineffective. 

o Other GPS-denied avionic sensors should be investigated and evaluated for 

aiding under-bridge UAS control. Potential sensors include, LiDAR, upward 

mounted sonar or laser range finders, additional on-board barometers, and 

additional image based navigational sensors. Sensors pointed upward at the 

bridge deck rather than downward where water is likely present are likely to 

have success. 
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Chapter 6: Non-Contact Fatigue Crack Detection at S-

BRITE Center 

Non-contact Evaluation (NCE) methods have become a topic of focus in structural health 

monitoring, maintenance, inspection, and condition assessment. Unmanned Aerial Vehicles 

(UAVs) have made a major contribution to NCE methods in recent years, especially for bridge 

inspections. Bridge inspectors and engineers have used UAVs to detect structural deficiencies and 

defects such as concrete cracks, concrete spalls and delamination, steel corrosion, missing 

connection members (such as bolts, nuts, etc.), and so on. However, the following challenges are 

faced when using UAVs to find steel fatigue cracks:  

 The dimensions of fatigue cracks are considerably smaller than those of other structural 

defects 

 Fatigue cracks usually occur under a bridge, which is harder to inspect using UAVs 

 The medium in which cracks form is rusty; therefore, cracks are not visible 

This chapter gives a summary of the attempts made by the authors to locate fatigue cracks in 

steel bridges using UAVs. The research team, including an inspector and a pilot, visited the Steel 

Bridge Research, Inspection, Training, and Engineering (S-BRITE) Center located at Purdue 

University in Lafayette, Indiana to perform visual and thermal inspections of the specimens with 

known and unknown cracks. In addition, a proctor from Purdue university supervised the 

inspection process. 
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S-BRITE Center 

The S-BRITE center is a part of the Center of Aging Infrastructure (CAI) owed by Purdue 

University in Lafayette, Indiana. Figure 6.1, adapted from Google Maps, shows the S-BRITE 

Center, which was the first phase of CIA (started in the fall of 2014).  

 

Figure 6.1 The CAI aerial image 

The S-BRITE center has full-scale bridges, portions of complete structures, and individual 

components with common and uncommon defects in them. However, the center is most famous 

for the Probability of Detection (POD) research frame, which is used to train bridge inspectors. 

The POD frame has three lines of girders, as shown in Figure 6.2. The girders were about 30 ft (10 

m) above the ground on the frames. Trainees inspect the middle and western exterior girders of 

the frame to find and measure fatigue cracks (shown in Figure 6.2). Each girder includes 18 

specimens with manufactured fatigue cracks in unknown locations and length on each side. The 

susceptible regions in the girders are the the beginning and the end of welds connecting vertical 

and/orand hrozontal stiffeners to the girder’s web. This type of fatigue crack is common in steel 

bridges with fracture critical components.. The girders have cover plates welded to the bottom 

flange with manufactured fatigue cracks, which represent another type of common fatigue cracks 

in steel bridges. These are called welded cover plate specimens. The third type of fatigue cracks 

POD Frame 

Known Fatigue Cracks 

Railroad Bridge 
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occur in riveted cover plates and were represented by the riveted cover plates on POD frame 

columns (riveted cover plate specimens).   

 
Figure 6.2 POD frame and UAV inspection 

Other than the POD frame, the S-BRITE center has structures with known fatigue cracks 

such as the 65 ft (20 m) long railroad span (Figure 6.3). The cracks in the railroad bridge have 

larger dimensions than ones in the POD frame.  

Pilot Inspector Proctor 

UAV 

Inspected Girders 
(Girder Specimens) 

Welded Cover 
Plates Specimens 

Riveted Cover 
 Plate Specimens 
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Figure 6.3 Railroad bridge with known fatigue cracks 

UAVs and Equipment 

The research team brought two UAVs, a DJI Mavic pro and a DJI Inspire 1, to inspect the 

structures with known and unknown fatigue cracks. They also used a DJI Phantom owned by the 

Purdue University pilot to inspect parts of the POD frame. Figure 6.4 shows the UAVs used for 

bridge inspection at the S-BRITE center. 

   
(a) (b) (c) 

Figure 6.4 UAVs used for S-BRITE bridge inspection: (a) DJI Mavic, (b) DJI Inspire, and (c) 

DJI Phantom 

Table 6.2 shows the model of the UAVs and their specifications. All UAVs had FPV 

streaming, downward sonar sensors, and barometers however, DJI Mavic performance was better 

in GPS-denied navigations due to Stereo vision positioning. 
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Table 6.2 UAV specifications 

UAV Weight Camera 
Flight Time 

(minutes) 

DJI Mavic Pro 1.6 lbs (0.7 kg) 12 MP 27 

DJI Inspire 1 Pro/RAW 7.5 lbs (3.4 kg) 12 MP 15 

DJI Phantom 3 Pro 2.9 lbs (1.3 kg) 12 MP 23 

Other than UAVs, the research team used an FLIR E8 thermal camera, Figure 6.5a to 

perform thermography on the structures with fatigue cracks. Active thermography, which uses a 

type of external heat or cooling source, is more likely to detect small defects. Therefore, a Wagner 

heat gun served as the external heat source to perform active thermography on the specimens 

(Figure 6.5b). A 9.7 in (25 cm) Samsung tablet, Galaxy Tab S3, provided the FPV for the inspector, 

see Figure 6.5c, while the pilot flew the UAV around the POD frame. Using the tablet, the 

inspector controlled the camera gimbal and image settings (zoom and exposure) to take the best 

pictures. 

   
(a) (b) (c) 

Figure 6.5 (a) Thermal camera FLIR E8, (b) Wagner heat gun, and (c) Samsung tablet 

Experiments 

The research team conducted the inspections on July 5 and July 6 2017, in the S-BRITE center. 

The narrative of the inspections was as following: 

 July 5 Inspections 

 Visual (tablet camera) and thermal inspection of the railroad bridge 
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 UAV inspection of the middle girder using DJI Mavic (East face) 

 Active thermography inspection of manufactured specimens with known fatigue cracks 

 UAV inspection of the riveted cover plates on the POD frame columns using the DJI 

Phantom 

 Inspection from July 6 

 UAV inspection of the middle girder (East face) 

 UAV inspection of the exterior girder (West face) 

 UAV inspection of the exterior girder using the DJI Mavic (West face) 

 UAV inspection of the bottom cover plates on the middle and exterior girders using the 

Inspire and the Mavic.  

The inspection began around 10:00 am on July 5, 2017 and it continued until 8:30 pm. The 

average temperature was 75F (24C), and the maximum wind speed was 10 mph (16 km/h). 

Figure 6.6 shows the weather information, including the hourly temperature, wind direction, and 

wind speed on the first inspection day (adopted from the KLAF weather station on 

weatherunderground.com). The wind direction during the inspection was mostly to the south. The 

majority of the inspection took place in an almost wind-free situation.  
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(c) 

Figure 6.6 Weather information for July 5th 2017: (a) temperature, (b) wind direction, and (c) 

wind speed 

The research team started the second inspection day at 9:00 am on June 6, 2017. The 

average temperature was 77F (25C), and the maximum wind speed was 9.5 mph (15 km/h) 

(adopted from the KLAF weather station on weatherunderground.com). Figure 6.7 shows the 

hourly weather information, including the temperature, wind direction, and wind speed on July 6.  
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(c) 

Figure 6.7 Weather information for July 6th, 2017: (a) temperature, (b) wind direction, and (c) 

wind speed 

The research team carried out the POD frame inspection using all three UAVs. The DJI 

Mavic was used for the girder inspections mostly. Due to its small size compared to the other 

available UAVs, the pilot was able to maneuver the DJI Mavic conveniently between the girders 

and lateral bracings. In addition, the DJI Mavic was stable since it had partial access to GPS signals 

and used Stereo vision positioning.  The achieved clearance was roughly 12 in. (30 cm), which 

was desirable for this project’s purposes. The west face of the exterior girder was inspected twice; 

the DJI Inspire was used the second time to compare the two platforms. The DJI Inspire also 

inspected the welded cover plate specimens. Finally, the research team used the DJI Phantom to 

inspect the riveted cover plate specimens.  

The S-BRITE center has structures with known fatigue cracks, often in or near fracture 

state. These cracks have larger dimensions than the cracks in the POD frame samples. These 

samples were either on the railroad bridge, occurred naturally, or in the bridge girder samples and 

grown in the lab. The research team inspected cracks in the railroad bridge using both visual and 

thermal cameras. The research team took pictures of the railroad bridge fatigue cracks using the 

DJI Mavic and the Samsung tablet. In addition, the research team applied active thermography on 
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fatigue cracks using the heat gun and monitored the region losing heat using the thermal camera. 

The specimens with grown fatigue cracks were inspected visually using the Samsung tablet and 

thermally using active thermography.  

Figure 6.8a shows one of the DJI Mavic pictures from a specimen in the POD frame with 

a possible fatigue crack located at the bottom of the weld connecting the girder’s web to the 

stiffener. Figure 6.8b shows the cover plates welded to the bottom flange of one of the girders in 

the POD frame.  

  
(a) (b) 

Figure 6.8 DJI Mavic images: (a) a girder in the POD frame with possible fatigue crack and (b) 

bottom flange cover plates 

Figure 6.9a shows the cover plates on the bottom flange of one of the POD frames taken 

by the DJI Inspire, while Figure 6.9b shows one of the DJI Phantom pictures with the riveted cover 

plates in the POD columns. 
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(a) (b) 

Figure 6.9 (a) Bottom flange cover plates in the POD frame girders, image by DJI Inspire and 

(b) riveted cover plates in the POD frame columns, image by DJI Phantom 

Figure 6.10a and 6.10b show pictures of identical fatigue cracks on the railroad bridge 

using the DJI Mavic and the Samsung tablet, respectively. The hole at the end of the fatigue crack 

stops the crack’s propagation by reducing the stress concentration. Figure 6.10c and 6.10d show 

the visual and thermal pictures of the same crack taken by the FLIR E8 thermal camera, 

respectively. The method used to take these pictures was passive thermography. 

  
(a) (b) 
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(c) (d) 

Figure 6.10 Fatigue crack in the railroad bridge: (a) DJI Mavic image, (b) Samsung Tablet 

image, (c) Visual image from the thermal camera, and (d) thermal image from the thermal 

camera using passive thermography 

Results and Discussion  

POD frame 

The POD frame had three types of specimens: girders, riveted cover plates on columns, 

and welded cover plates on the girder’s bottom flange. 

GIRDERS 

The pilot flew the DJI Mavicfor the inspector to inspect the girder specimens and detect 

fatigue cracks through the FPV monitor and drew them on the corresponding schematic drawing 

of each specimen. The inspector reported 159 fatigue cracks in 45 girder specimens and none in 

27 specimens. The inspection time was 241 minutes, which only included the flight time. This type 

of inspection, where the inspector reports cracks during the inspection, is referred to as a “realtime” 

inspection. Figure 6.11a shows five reported fatigue cracks in one of the girder specimens. Figure 

6.11b depicts the realtime inspection report of another girder specimen with no reported fatigue 

cracks.  
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(a) (b) 

Figure 6.11 Realtime inspection results in the girders of the POD frame: (a) sspecimen with 

reported fatigue cracks (b) specimen with no reported fatigue cracks 

After the inspection, the inspector reviewed the captured pictures to detect fatigue cracks 

on a 27 in (69 cm) Dell monitor. This process is called “postmortem” inspection and the monitor 

is called postmortem monitor . The research team took 990 images of the girders on the POD frame 

with the DJI Mavic, and the inspector reviewed them on the postmortem monitor in 116 minutes. 

The inspector reported 81 fatigue cracks, which was almost half the number of cracks reported in 

realtime. According to the postmortem results, the reported cracks were located on 41 specimens 

while 31 specimens were crack-free.Figure 6.12 shows the postmortem results along with the 

inspection pictures of a a girder specimen with no reported fatigue crack. . Figure 6.13 Postmortem 

result and inspection pictures of a specimen with two reported fatigue cracks on the bottom.  
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Figure 6.12 Postmortem result and inspection pictures of crack-free specimen  
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Figure 6.13 Postmortem result and inspection pictures of a specimen with two reported fatigue 

cracks on the bottom 

In the 39 specimens, the number of reported fatigue cracks from the postmortem inspection 

was less than that of the realtime inspection. The girder specimens had a number of scratch lines 

long the welds that were considered to be fatigue cracks in the realtime inspection. Weld notches 

also confused the inspector in realtime. Figure 6.14 shows an example of the inconsistency 

between realtime and postmortem inspection reports. As seen, the postmortem report discarded 

one-third of the reported cracks from the realtime report (2 out of 6) because the inspector 

considered them to be scratch marks. The postmortem inspection reported one crack on the top-

left and one on the bottom-left location of the weld, which are shown in Figure 6.15a and Figure 

6.15b, respectively. The inspector did not report four previously reported fatigue cracks: a scratch 

mark beginning on the top-right and extending to the middle (Figure 6.15c), rust on the top-right 

side of the horizontal stiffener (Figure 6.15d), rust on the bottom-right horizontal stiffener and 

weld notch on bottom-right (Figure 6.15e), and a scratch mark starting on the bottom left of the 

weld and extending to bottom of the left horizontal stiffener (Figure 6.15f).  
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(a) (b) 

Figure 6.14 A girder specimen inspection using DJI Mavic images: (a) postmortem report and 

(b) realtime report 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.15 DJI Mavic inspection images of a girder specimen : (a) top-left fatigue crack, (b) 

bottom-left fatigue crack, (c) scratch on top-right, (d) rust on top-right side of the horizontal 

stiffener, (e) rust and weld notch on bottom-right, (f) scratch on bottom-left 

The number of reported fatigue cracks after the postmortem inspection were equal to that 

of the realtime inspection in 24 specimens. Fourteen out of 24 specimens had no cracks. In the 

remaining ten specimens, 24 fatigue cracks were reported in both inspections; however, only 18 
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of the cracks were the same in both inspections. Figure 6.16a and Figure 6.16b show the 

postmortem and realtime reports based on the DJI Mavic images, respectively. As seen, both 

inspections reported two fatigue cracks located on bottom-right of the weld, Figure 6.17a, and 

bottom-left of the weld, Figure 6.17b.  

  

(a) (b) 

Figure 6.16 Reports on a girder specimen based on the DJI Mavic image: (a) postmortem report 

and (b) realtime report 

  
(a) (b) 

Figure 6.17 DJI Mavic images of fatigue cracks in a girder specimen: (a) crack on bottom-right 

and (b) crack on bottom left 

In the remaining 9 specimens, the postmortem inspection reported more cracks than the 

realtime inspection. The realtime inspection reported only three cracks; the inspector reported 15 
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cracks after the postmortem inspection, two were previously reported in realtime. One specimen 

was reported crack-free according to the realtime inspection, with a weld notch on the top, see 

Figure 6.18b. After the postmortem inspection, however, the inspector detected three fatigue 

cracks on it, see Figure 6.18a. The inspector reported two fatigue cracks on the top-right, see Figure 

6.19a, and one fatigue crack on the top-left, see Figure 6.19b, which were not reported in realtime. 

The bottom-left rust did not confuse the inspector in realtime or in the postmortem inspections. 

Figure 6.19c shows the rust.  

  

(a) (b) 

Figure 6.18 A girder specimen inspection using the DJI Mavic images: (a) postmortem report 

and (b) realtime report 

   
(a) (b) (c) 

Figure 6.19 Inspection images taken by the DJI Mavic of a girder specimen: (a) top-right fatigue 

cracks, (b) top-left fatigue crack, and (c) scratch on bottom-left 
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The postmortem inspection reported 51% fewer fatigue cracks than the realtime inspection 

for girder specimens. The reports from the realtime and postmortem inspections had 53 cracks in 

common throughout 31 specimens, while both methods reported no cracks in 14 specimens. The 

UAV inspection took 241 minutes, and the postmortem inspection took an additional 116 minutes, 

during which 990 images were reviewed. 

Table 6.3 shows the number of reported fatigue cracks in the girder specimens in both 

inspections. The third column of this table presents the number of identical cracks detected in both 

inspections.   

Table 6.3 Reported cracks in girders specimens, realtime and postmortem 

Specimen No 

No of reported 

cracks (Realtime) 

No of reported 

cracks  

(Post mortem) 

No of 

matched 

cracks 

1 6 2 1 

2 2 2 2 

3 0 0 0 

4 0 0 0 

5 4 0 0 

6 2 1 1 

7 5 2 2 

8 1 0 0 

9 4 0 0 

10 3 2 2 

11 0 0 0 

12 5 2 1 

13 2 2 1 

14 2 0  

15 0 0 0 

16 3 2 1 

17 1 2 1 

18 5 4 1 
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19 1 2 1 

20 3 1 1 

21 5 2 2 

22 3 3 3 

23 0 0 0 

24 1 0  

25 0 0 0 

26 3 3 2 

27 3 0  

28 0 1 0 

29 0 0 0 

30 0 0 0 

31 0 1 0 

32 0 0 0 

33 2 0  

34 1 2 0 

35 2 1 1 

36 0 3 0 

37 1 0  

38 6 2 2 

39 8 5 5 

40 4 1 1 

41 2 1 1 

42 5 0  

43 6 2 2 

44 0 2 0 

45 3 3 2 

46 2 2 2 

47 7 0  

48 5 0  

49 0 0 0 

50 1 0  

51 2 2 2 

52 1 0  
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53 0 1 0 

54 4 1 1 

55 5 1 1 

56 2 1 0 

57 6 3 3 

58 0 0 0 

59 5 3 3 

60 2 0  

61 4 4 2 

62 0 0 0 

63 0 0 0 

64 3 2 1 

65 0 1 0 

66 4 1 0 

67 3 0  

68 1 0  

69 2 0  

70 2 2 2 

71 0 0 0 

72 1 1 0 

Sum 166 81 53 

 

EXTERIOR GIRDER (WEST FACE) 

In addition to the DJI Mavic, the research team inspected the west face of theexterior girder 

line, which included 18 specimens, using the DJI Inspire. The inspection time for the DJI Mavic 

was 27 minutes, while the inspection using the DJI Inspire required 57 minutes to perform. The 

DJI Inspire lacks a downward sonar sensor; therefore, it was harder for the pilot to stablize than 

the DJI Mavic. The achieved clearance was between 10 in. and 16 in. (25 cm to 40 cm) for the DJI 

Mavic and between 30 in. and 40 in. (75 cm to 100 cm) for the DJI Inspire. The DJI Inspire required 
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more clearance while inspecting because it was bigger than the DJI Mavic and does not have access 

to stereo vision positioning. 

In the DJI Mavic inspection, 5 out of 18 specimens were reported as crack-free, while this 

number was reported to be 2 for the inspection using the DJI Inspire. The inspector reported 32 

and 14 cracks during  realtime and postmortem inspections. There were 6 cases where the inspector 

reported more cracks in the DJI Mavic images than the DJI inspire images. An example is the 

specimen shown in Figure 6.20a and 6.20b realtime inspection reports based on the DJI Mavic and 

the DJI inspire pictures, respectively. The inspector reported fewer fatigue cracks in the DJI Mavic 

images than the DJI Inspire images in 7 specimens, for instance specimen shown in Figure 

6.21Error! Reference source not found.a ich was reported to be crack-free in the DJI Mavic 

pictures, see. However, the inspector reported four fatigue cracks while doing the inspection using 

the DJI Inspire, see Figure 6.21b. Finally, the inspector reported the same amount of cracks in 5 

specimens. However, the locations of the detected cracks were only similar in two specimens. In 

4 specimens, the inspector reported inconsistent results, shwon in Figure 6.22a and Figure 6.22b 

for  the DJI Mavic and DJI Inspire inspections, respectively. 

 

  
(a) (b) 
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Figure 6.20 Realtime inspection results for a specimen with different number of reported cracks-

B according to images from (a) the DJI Mavic and (b) the DJI Inspire 

  
(a) (b) 

Figure 6.21Realtime inspection results for a specimen with different number of reported cracks 

(a) the DJI Mavic and (b) the DJI Inspire 

  
(a) (b) 

Figure 6.22 Realtime inspection results for a specimen according to images from (a) the DJI 

Mavic and (b) the DJI Inspire 

The inspector reported 16 fatigue cracks from 145 DJI Mavic images after 22 minutes of 

postmortem inspection, while reporting 14 cracks from 992 DJI Inspire images in 31 minutes. The 

number of acquired images from the DJI Inspire was significantly greater than the DJI Mavic 

because the DJI Inspire took the pictures in snapshot mode (992 images). The inspection team did 

not control the snapshot mode therefore, some of the DJI Inspire pictures were blurry and unusable 

for fatigue crack detection. As a result,  the postmortem inspection time was only 9 minutes more 

than the DJI Mavic’s postmortem inspection time. The inspector reported more cracks in the DJI 
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Inspire photos in 5 specimens. For instance, the inspector reported three fatigue cracks located at 

the top-left, bottom-left, and bottom-right of the weld in the specimen shown in 1.23 while 

reviewing the DJI Mavic images. For the same specimen, the number of reported cracks from the 

DJI Inspire images was 5, with new reported cracks located at the top-left and top-right. Figure 

6.23a and 6.23b show the top-left of the weld in this specimen. As seen, there is a scratch or crack 

along the weld line. The inspector reported this scratch or crack along the weld as a crack when 

reviewing the DJI Inspire images. 

  
(a) (b) 

Figure 6.23: (a) 1 fatigue crack reported on top-left in the DJI Mavic images and (b) 2 fatigue 

cracks reported on top-left in the DJI Inspire images 

In 6 specimens, the inspector reported the same number of fatigue cracks in the images 

from both UAVs. Five out of 6 of these specimens were reported to be crack-free. The inspector 

reported identical cracks in the specimen shown in Figure 6.24 in the postmortem inspection of 

the images from both UAS.  
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(a) (b) 

  
(c) (d) 

Figure 6.24 Reported fatigue cracks: (a) top-right captured by DJI Mavic, (b) top-right captured 

by DJI Inspire, (c) top-left captured by DJI Mavic, and (d) top-right captured by DJI Inspire 

For the rest of the 7 specimens, the inspector reported more cracks from the DJI Mavic 

Images than the DJI Inspire images. 

The number of reported fatigue cracks in realtime for both UAVs was consistent. However, 

the inspector reported almost half of that in the postmortem inspection, which is consistent with 

the previous results. The DJI Mavic images had better quality than the DJI Inspire images due to 

the DJI Mavic’s smaller achievable clearance and less UAV vibration.  

Table 6.4 shows the results of the realtime and postmortem inspections using the DJI Mavic 

and DJI Inspire UAVs. 
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Table 6.4 Performance comparison between DJI Mavic and DJI Inspire for fatigue crack 

detection 

Specimen ID 

No of reported fatigue 
cracks (realtime) 

No of reported fatigue 
cracks (postmortem) 

No of 
matched 
cracks 

location 

DJI Mavic DJI Inspire DJI Mavic DJI Inspire 

1 3 2 1 2 1 BL 

2 2 1 1 0 0  

3 6 5 3 3 3 TL-BL-BR 

14 0 2 0 2 0  

5 4 2 2 1 1 ML 

6 2 0 0 0 0  

7 2 2 3 2 2 TL-TR 

8 0 1 0 0 0  

9 0 1 0 0 0  

10 3 4 2 1 0  

11 0 3 1 0 0  

12 4 1 1 0 0  

13 3 2 0 0 0  

14 1 1 0 0 0  

15 2 1 0 2 0  

16 1 2 1 1 1 TL 

17 0 0 0 0 0  

18 1 2 1 0 0  

Sum 34 32 16 14 8  

RIVETED COVER PLATES 

The inspector reported 68 cracks in realtime from the DJI Phantom images of riveted cover 

plates in 52 minutes. The achieved clearance was about 30 in. (75 cm). Unfortunately, the research 

team was not able to record any pictures from one of the riveted cover plate specimens due to an 

interal flash memory malfuntion which reported to have 15 cracks. The least number of fatigue 

cracks was three in among riveted cover plate specimens. The inspector also reported 45 fatigue 

cracks from 107 images in 69 minutes. The number of identical cracks reported in both inspections 

was only 15. Figure 6.25a and 6.25b show the reported cracks on specimen one of the riveted cover 

plate specimen in realtime and postmortem inspections, respectively.  
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(a) 

 
(b) 

Figure 6.25 A riveted cover plate specimen (a) reported in realtime and (b) reported in 

postmortem 

The inspector reported five cracks while inspecting the specimen in Figure 6.25 and 

reported six cracks after reviewing inspection images. Figure 6.26a shows the crack on the third 

row from the top of the specimen, and Figure 6.26b shows fatigue cracks on row 25 and row 27 

from the top.   
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(a) (b) 

Figure 6.26 Images of the riveted cover plate specimen (a) reported crack on row 3 and (b) 

reported cracks on row 25 and 27 

The postmortem inspection reported 24% fewer cracks in the riveted cover plates than the 

realtime inspection. The inspector reported only 16 identical fatigue cracks in both inspections.  

Table 6.5 shows the realtime and postmortem inspection results for riveted cover plates. 
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Table 6.5 Realtime and postmortem reports for riveted cover plates 

Specimen ID 
No of reported 

cracks (realtime) 

No of reported 
cracks (post 

mortem) 

No of 
matched 
cracks 

Location 

1 14 0 -  

2 17 6 3 1-2-23 

3 6 8 3 25-15-13 

4 7 3 2 26-21 

5 6 7 1 7 

6 9 9 2 7-27 

7 5 6 3 3-25-27 

8 3 6 2 22-17 

Sum 68 45 16  

WELDED COVER PLATES 

The total number of welded cover plate specimens was 58. Due to the position of the 

specimens, the research team was not able to inspect all of them using UAVs. The research team 

inspected 20 welded cover plate specimens, 14 specimens using the DJI Phantom and 6 specimens 

using the DJI Mavic. The inspector reported 26 cracks in realtime. Postmortem inspection reported 

15 cracks, with 7 of them previously detected in realtime. Because it was not possible to inspect 

the welded cover plates in order, the inspector had to keep up with the orientation and location of 

the UAV during the inspection. This made the inspection more challenging than the inspection 

done on riveted cover plates or girders. Figure 6.27a and 6.27b show the reported cracks on a 

welded cover plate specimen in realtime and postmortem, respectively. Figure 6.27c shows one of 

the inspection images from specimen on the same specimen taken by the DJI Phantom. The 

inspector reported a crack along the weld in both realtime and postmortem inspections. Unlike the 

realtime inspection, the postmortem inspection ruled out the surface defect perpendicular to the 

weld as a fatigue crack. The inspector did not report the extension of the defect correctly as seen 

in Figure 6.27a and Figure 6.27Error! Reference source not found.c. 
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(a) (b) 

 
(c) 

Figure 6.27 A welded cover plate specimen CPP-6 (a) realtime report, (b) postmortem report, 

and (c) inspection image taken by the DJI Phantom 

Table 6.6 shows the realtime and postmortem inspection results for the welded cover plates. 
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Table 6.6 Realtime and postmortem reports for welded cover plates 

Specimen ID 
No of reported 

cracks (realtime) 

No of reported 
cracks (post 

mortem) 

No of 
matched 
cracks 

1 2 No Pictures  

2 3 4 3 

3 2 1 1 

4 3 0  

5 2 0 0 

6 2 No Pictures  

7 3 No Pictures  

8 2 3  

9 1 0  

10 1 1 1 

11 1 0  

12 0 0  

13 1 2 1 

14 2 2 1 

15 0 1 0 

16 1 0  

17 0 0  

18 0 0  

19 0 1 0 

20 No Detection   

 No Detection   

Sum 26 15 7 

 

Specimens with Known Fatigue Cracks 

RAILROAD BRIDGE 

The fatigue cracks in the railroad bridge structure were longer and wider than the ones in 

the POD frame. In many cases, the fatigue cracks have led to fracture. Some cracks had holes at 

the end to reduce the stress and stop propagation. The research team inspected the railroad bridge 

using visual and thermal cameras in addition to the DJI Mavic. The visual camera was the 13 MP 

built-in Samsung tablet camera. For the thermal inspection, the inspector used active thermography 

by heating the fatigue cracks up to approximately 200F. Figure 6.28a shows the Samsung tablet 
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image from one of the fatigue cracks in this structure. Figure 6.28b shows an image from the same 

crack taken by the DJI Mavic during the UAV inspection of the railroad. The crack was not as 

visible in the tablet image, but was still recognizable. Figure 6.28c shows a thermal image of the 

fatigue crack while it was losing heat. The temperature gradient was 23F when the image was 

taken. As seen, the presence of the fatigue crack disrupted surface temperature contribution.  

   
(a) (b) (c) 

Figure 6.28 Known fatigue crack in the railroad bridge: (a) tablet image, (b) DJI Mavic image, 

and (c) thermal image 

In some cases, the inspector used thermography to successfully detect fatigue cracks when 

they were not visible. Figure 6.29a shows an image of a fatigue crack, which was not visible due 

to lack of light. The thermal image of the same crack is shown in Figure 6.29b, where the crack is 

clearly detectable. The thermal gradient of the thermal image was 139F.  

  
(a) (b) 

Figure 6.29 (a) A visually undetectable fatigue crack, and (b) fatigue crack detection using 

active thermography 

23.6°C

41.7°C

-23.4°C

247.3°C
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Manufactured Known Fatigue Cracks 

The research team inspected specimens with manufactured fatigue cracks using visual 

images and thermal images (active thermography). The crack dimensions in these specimens 

varied drastically. In some cases, they were undetectable visually, Figure 6.30a, while some had 

bigger dimensions and were easily detectable, Figure 6.30b. The research team used the Samsung 

tablet for visual inspection and the FLIR E8 camera for thermal inspection. Figure 6.30a shows a 

small manufactured fatigue crack, and Figure 6.30b shows an example of the larger fatigue cracks 

in these specimens. 

 

  
(a) (b) 

Figure 6.30 Known manufactured fatigue cracks which were (a) small and undetectable visually 

and (b) large and detectable visually 

The inspector detected the fatigue crack in the specimen shown in Figure 6.30a using active 

thermography, Figure 6.31. The thermal gradient at the time of thermal photography was 145F 

from pre-heating with the heat gun.  
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Figure 6.31 Detected fatigue crack in the thermal image of a specimen with a visually 

undetectable crack 

Thermal inspection also helped the inspector to detect the actual length and extension of 

fatigue cracks in some cases. Figure 6.32a shows the visual image of a fatigue crack where only 

the left portion of the crack was detectable. After heating the specimen to achieve an 88F 

temperature gradient, the inspector was able to detect the crack’s whole length as seen in Figure 

6.32b.  

13.1°C

155.5°C
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(a) (b) 

Figure 6.32 Detecting the full length of the fatigue crack using thermography. (a) Visual image, 

partial detection and (b) thermal image full detection  

Accuracy of the POF Frame Inspection 

Two binders, one for realtime inspection and one for postmortem inspection, of reported 

cracks were sent to the S-BRITE center to compare the results of UAV inspections to the ground 

truth. In addition, the results of 30 human inspections of the POD frame were provided and 

compared to UAV inspections. 

In the FCM inspection of girders using DJI Mavic, 64% and 61% of actual cracks were 

detected in realtime and postmortem, respectively. The average true positive rate of 30 human 

inspectors was 61% which is less than or equal to UAV inspection. The rate of false positives was 

89% and 72% in realtime and postmortem inspections, respectively. The average of false reports 

of fatigue cracks in human inspectors was 79% which was between the false positive rate of UAV 

inspections. The postmortem inspection reduced both true and false positive reports however, 

increased the accuracy of UAV inspection since the false positive reduction was 17% and true 

positive reduction was only 3%. Figure 6.33a shows how a 9.2 cm long fatigue crack was 

successfully detected and reported in realtime and postmortem inspections (a hit). Figure 6.33b 

shows an example of a 2.7 cm fatigue crack which was missed in both realtime and postmortem 

52.3°C

104.8°C
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inspections. The crack was located inside of a circle in Figure 6.33b. Figure 6.33c is a case of false 

positive in which the inspector reported the rusty edge of the weld as a fatigue crack.  

   
(a) (b) (c) 

Figure 6.33 Girder UAV inspection (a) a true positive (hit), (b) a false negative (miss), (c) a false 

positive. 

Comparing the results of the 18 specimens on the exterior girder, DJI Mavic inspection and 

DJI Inspire inspection provided almost similar true positive and false positive reports in realtime 

(33% and 44%. respectively). However, the inspector performed better in postmortem inspection 

using DJI Inspire images detecting by 12% more cracks and reporting 10% less false positives. 

The average true and false detections by human inspector was 44% and 79%, respectively, which 

were comparable to the inspire results.  

During the FCM inspection of welded plates which was mostly performed by DJI Inspire, 

75% of the cracks were detected; but 88% of the detections were false. Interestingly, in the 

postmortem inspection no cracks were detected correctly; therefore, all the detections were wrong 

(100% false positives). The average human inspection on these specimens was 75% of true 

detection and 73% of false detection which were comparable to realtime inspections using UAVs. 

Figure 6.34.a shows a true detection of a 12.8 cm long fatigue crack along the weld using a DJI 

Mavic picture. In Figure 6.34.b, the location of the 5 cm long crack was indicated by a circle. This 

crack was undetectable based on the inspection images. In Figure 6.34c, the rusty line was 

mistaken for a fatigue crack (false positive).  
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(a) (b) (c) 

Figure 6.34. Welded plate UAV inspection (a) a true positive (hit), (b) a false negative (miss), (c) 

a false positive. 

DJI Phantom performance in inspecting riveted plates was close to the average human 

inspection. Eighty-nine percent of the fatigue cracks were detected during the inspection which 

was exactly the same hit rate of the average human performance. The inspector however reported 

4 times more false positives than the average human inspectors in realtime. The postmortem 

inspection was slightly better in terms of the false negative reports (5%) while the number of actual 

detections was decreased by 12% compared to realtime results. Figure 6.35a shows a true positive 

report on the riveted cover plates with a 2 cm fatigue cracks. Figure 6.35b is an example of how 

the inspector missed a 4 cm long crack in both realtime and postmortem inspections. Figure 6.35c 

shows of the false positive examples where a linear surface rust was confused with a fatigue crack. 

The possible reason for better human performance in riveted cover plates could be their easy 

accessibility. It was possible for the inspector to stand on the ground and inspect half of the riveted 

specimens and the other half by standing on a ladder. This gave the inspector more control and 

possibly closer visual view on the riveted specimens leading to most accurate results. 
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(a) (b) (c) 

Figure 6.35. Riveted plate UAV inspection (a) a true positive (hit), (b) a false negative (miss), (c) 

a false positive. 

Table 6.6 shows a summarized comparison between FCM inspection of the POD frame 

using UAV and humans.  

Table 6.6 Comparing realtime and postmortem UAV performance to average of human 

performance 

UAV Member (no) 

Realtime Postmortem Human Inspector (average of 30) 

No 
Reported  
Cracks 

Time 
(min) 

TP 
(%) 

FP 
(%) 

No 
Reported 
Cracks 

Time 
(min) 

TP 
(%) 

FP 
(%) 

No 
Reported 
Cracks 

Time 
(min) 

TP 
(%) 

FP 
(%) 

Mavic Girder (72) 159 241 64 89 61 116 61 72 82 144 61 79 

Mavic Girder (18) 34 27 33 91 16 22 33 81 19 27 44 79 

Inspire Girder (18) 32 57 44 88 14 31 44 71 19 27 44 79 

Inspire 
Welded 

Plates (20) 
26 17 75 88 15 24 0 100 11 No Data 75 73 

Phantom 
Riveted 

Plates (8) 
68 52 89 88 45 69 78 84 10 17 89 20 

 

The UAV had comparable accuracy to the average human inspection in terms of true and 

false positive reports when the specimens were not easily accessible (welded plates and girders). 

However, human inspections were more accurate than UAV inspections in terms of false positive 

reports when the specimens were easier to access (riveter plates). The UAV false positive reports 

were slightly greater than the average of human inspectors. The realtime FCM inspections using 

UAV were almost twice more time-consuming than human inspections. Adding the postmortem 

time, the UAV inspection time was three times more than the average human inspections. 
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Although, DJI Inspire seemed to provide better results in terms of accuracy of detection but, it 

required twice inspection time than DJI Mavic. DJI Mavic was significantly more stable than the 

others which reduced the inspection time. 

UAS Assisted Bridge Inspection 

The results of UAS-assisted FCM bridge inspection showed promising results therefore, 

four bridge inspectors were selected to inspect the POD frame at the S-BRITE center using UAS. 

The inspections were carried out over four days. The goal of these inspections was to evaluate the 

performance of UAS in a realistic scenario in terms of accuracy, inspection time, level of 

convenience, and lighting condition. The UAS used in these inspections was the DJI Mavic which 

proved to be the most effective UAS in the previous inspection. The weather information for the 

inspection days are shown in Figure 6.36 (collected from the KLAF weather station on 

weatherunderground.com). Each inspection started in the early morning and continued until 

sunset. Before inspecting the POD frame, each inspector was given a 20-minute warm-up 

inspection on the railroad bridge with known fatigue cracks to get used to the camera controllers 

on the tablet.  
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Figure 6.36. Weather information on inspection days, left temperature, right wind speed  

First Inspection  

The first inspector detected 10 fatigue cracks out of 20 cracks existing on the POD frame 

(50% true positives). The total false positive rate was 87% with a hit to call ratio of 13%. Hit to 

call ratio is defined the number of calls made to detect a fatigue crack. Total inspection time was 

125 minutes. These results included 2 rows of the girder specimens and one row of the welded 

cover-plate specimens. On the girder specimens the UAS inspection provided 29% and 100% of 

hit rate, on the first row and second row of the frame, respectively. The average hit rates for the 

same specimens using hands-on human inspections were 60% and 70%, respectively. The hit to 

call ratio for the girder specimens were 11% and 21% for UAS-assisted inspections and 31%, and 

36% for average human inspections. The inspection time for each row of the girder specimens 

when UAS was used was 48 and 54 minutes, which were close to the average of human inspection 

time, 45 and 40 minutes. In the welded cover-plate specimens, the inspector did not detect any 
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cracks, 0 hits in 23 minutes. Table 6.7 shows the inspection results for both UAS-assisted and 

average of human inspections.  

Table 6.7 Results of the first inspection, UAS-assisted and average human inspections 

Specimen Type 
Number of 
Specimens 

Realtime Human Inspector (average of 30) 

Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) 

Girder (First Row) 18 48 29 89 11% 45 60 76 31 

Girder (Second Row) 18 54 100 79 21 40 70 75 36 

Welded Cover-Plates  16 23 0 100 0 No data 57 73 40 

 

Second Inspection 

The second inspector detected 22 fatigue cracks out 38 cracks existing on the POD frame 

(58% true positives). The total false positive rate was 54% with a hit to call ratio of 46%. Total 

inspection time was 199 minutes. These results included 3 rows of the girder specimens, one row 

of the welded cover-plate specimens, and 8 riveted cover-plate specimens. On the girder specimens 

the UAS inspection provided 86%, 63%, and 56% of hit rate, on the first, second, and fourth rows 

of the frame. The average hit rates for the same specimens using hands-on human inspections were 

60%, 70%, and 44% respectively. The hit to call ratio for the girder specimens were 55%, 50%, 

and 50% for UAS-assisted inspections and 31%, 36%, and 29% for average human inspections. 

The inspection time in the girder specimens for each row of the girder specimens was 56, 51, and 

32 minutes which were greater than the average human inspection time, 45, 40 and 27 minutes. In 

the welded cover-plate specimens, the inspector did not detect any cracks, 0 hits in 41 minutes. In 

the riveted cover-plate specimens, UAS-assisted inspection detected 67% of the cracks in 19 
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minutes. The average human inspection for these specimens provided 84% of hit rate in 17 

minutes. The hit to call ratio was 86% for both types of inspection. Table 6.8 shows the inspection 

results for both UAS-assisted and average of human inspections.  

Table 6.8 Results of the second inspection, UAS-assisted and average human inspections 

Specimen Type 
Number of 
Specimens 

Realtime Human Inspector (average of 30) 

Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) 

Girder (First Row) 18 56 86 45 55 45 60 76 31 

Girder (Second Row) 18 51 63 50 50 40 70 75 36 

Girder (Forth Row) 18 32 56 50 50 27 44 79 29 

Welded Cover-Plates  16 41 0 100 0 No data 57 73 40 

Riveted Cover-Plates 8 19 67 14 86 17 84 20 86 

 

Third Inspection  

The third inspector detected 20 fatigue cracks out of 42 cracks existing on the POD frame 

(48% true positives). The total false positive rate was 73% with a hit to call ratio of 27%. Total 

inspection time was 145 minutes. These results included 3 rows of the girder specimens, 2 rows 

of the welded cover-plate specimens, and 8 riveted cover-plate specimens. On the girder specimens 

the UAS inspection provided 57%, 63%, and 33% of hit rate, on the first, second, and fourth rows 

of the frame, respectively. The average hit rates for the same specimens using hands-on human 

inspections were 60%, 70%, and 44%, respectively. The hit to call ratio for the girder specimens 

were 27%, 22%, and 23% for UAS-assisted inspections and 31%, 36%, and 29% for average 

human inspections. The inspection time in the girder specimens for each row of the girder 
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specimens was 35, 32, and 32 minutes which were less than the average human inspection time, 

45, 40 and 27 minutes. In the welded cover-plate specimens, the UAS-assisted inspection provided 

20% and 50% of hit rates in 19 and 8 minutes whereas the average human inspection had the true 

positive rate of 57% and 87%, for the first and fourth rows of the welded cover-plate specimens, 

respectively. The hit to call ratio in UAS inspection was 11% and 67% and 40% and 91% for 

human inspection. In the riveted cover-plate specimens, UAS-assisted inspection detected 56% of 

the cracks with a hit to call ratio of 45% in 19 minutes. The average human inspection for these 

specimens provided 84% of hit rate and 86% of hit to call ratio in 17 minutes. The average lighting 

condition on the girder, welded cover-plate, and riveted cover-plate specimens were. Table 6.9 

shows the inspection results for both UAS-assisted and average of human inspections.  

Table 6.9 Results of the third inspection, UAS-assisted and average human inspections 

Specimen Type 
Number of 
Specimens 

Realtime Human Inspector (average of 30) 

Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) 

Girder (First Row) 18 35 57 73 27 45 60 76 31 

Girder (Second Row) 18 32 63 78 22 40 70 75 36 

Girder (Forth Row) 18 32 33 77 23 27 44 79 29 

Welded Cover-Plates 
(First Row) 

16 19 20 89 11 No data 57 73 40 

Welded Cover-Plates 
(Fourth Row) 

7 8 50 33 67 No data 87 25 91 

Riveted Cover-Plates 8 19 56 54 45 17 84 20 86 

Fourth Inspection 

The fourth inspector detected 12 fatigue cracks out of 20 cracks existing on the POD frame 

(60% true positives). The total false positive rate was 85% with a hit to call ratio of 15%. Total 
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inspection time was 201 minutes. These results included 2 rows of the girder specimens and one 

row of the welded cover-plate specimens. On the girder specimens, the UAS inspection provided 

57% and 63% of hit rate, on the first and second rows of the frame. The average hit rates for the 

same specimens using hands-on human inspections were 60% and 70%, respectively. The hit to 

call ratio for the girder specimens were 18%, and 14%, for UAS-assisted inspections and 31%, 

and 36% for average the human inspections. The inspection time in the girder specimens for each 

row of the girder specimens was 103 and 66 minutes which were greater than the average human 

inspection time, 45, and 40 minutes. In the welded cover-plate specimens, the UAS-assisted 

inspection provided 60% of hit rate in 32 minutes whereas the average human inspection had the 

true positive rate of 57%. The hit to call ratio in UAS inspection was 16% and 40% for the average 

human inspection. Table 6.10 shows the inspection results for both UAS-assisted and average of 

human inspections.  

Table 6.10 Results of the fourth inspection, UAS-assisted and average human inspections 

Specimen Type 
Number of 
Specimens 

Realtime Human Inspector (average of 30) 

Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) Time (min) 
TP 
(%) 

FP 
(%) 

Hit/Call (%) 

Girder (First Row) 18 103 57 82 18 45 60 76 31 

Girder (Second Row) 18 66 63 86 14 40 70 75 36 

Welded Cover-Plates 
(First Row) 

16 32 60 84 16 No data 57 73 40 

 

Conclusions 

The results of this section showed that the UAS-assisted FCM bridge inspection provided 

comparable accuracy, inspection time, and hit to call ratios to the hands-on inspections. These 
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results indicate that UAS-assisted FCM inspections may be possible, but given the limited data 

acquired here, deserves more thorough investigation.  
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Chapter 7: Conclusions  

Conclusions 

Many types of bridge inspections are time consuming, expensive, dangerous, and tedious. 

Because of this, much research has been focused on finding alternatives or better protocols for 

bridge inspections. UASs have shown promising results in previous research performed by many 

state DOTs. These studies have found significant limitations, but also successes. The most 

common UAS applications studied by DOTs were traffic monitoring and surveillance, road 

condition assessment, and mapping. However, in bridge inspections, UASs have shown varying 

degrees of success. Only a handful of DOTs have studied feasibility of bridge inspections using 

UASs: California, Georgia, Michigan, Minnesota, Florida, and Idaho. This study focused on using 

UASs for under-bridge inspections, with an emphasis on fatigue crack detection.  

The following observations can be made about UAS from the literature review: 

 The recent advances of UAS have the potential to provide low cost options to gather 

previously difficult or expensive images (Zink 2015, Otero 2015). 

 There have been mixed successes with UAS aided bridge inspections throughout the 

United States. Some cases have resulted in successful inspections in easily accessible 

locations where the UAS has access to GPS, the most reliable and effective tool for UAS 

autopilots (Moller 2008, Otero 2015). 

 UAS control options need to improve so that a pilot can safely and effectively obtain stable 

images of every part of a bridge in any reasonable weather, especially without the aid of 

GPS (Zink 2015). 

 Weather currently plays too big of a role in UAS flight success, which is a very significant 

barrier for many state agencies with very tight inspection schedules (Otero 2015). 
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 Current FAA restrictions are not too burdensome for an agency to perform some 

inspections, but provide significant challenges. Regulations will relax over time, as in the 

past, as public perception, UAS reliability, and autonomous controls continue to improve 

(Brooks 2015, Otero 2015). 

The following observations and conclusions are made from the small bridge experiment: 

 Image processing techniques (3D mapping or damage detection) that can detect defects are 

a significant advantage of a UAS inspection (E002 and E005), but must be tailored to the 

situation. Also, 3D mapping is not likely to be useful at this time without significant effort 

based on the experience with off-the-shelf software (E005).  

 Real-time and automated visual concrete deck crack detection is possible and effective with 

90 percent detection (E001 and E002). 

 Light girder corrosion was detectable in real-time (E004).  

 Concrete delamination detection was shown to be feasible using thermography and would 

provide a promising area of additional research (E003).  

 Image processing techniques can be used to help the inspector find fatigue or concrete 

cracks and show promise for automated detection. 

In this study, the research team investigated the feasibility of fatigue crack detection using two 

remote sensing methodologies: visual and thermal images. Three UASs were used to capture 

images of a fatigue crack. These images helped the research team provide crack detection 

requirements in terms of lighting condition and camera distance to investigate the feasibility of 

fatigue crack detection in GPS-denied environments in a no wind situation and to assess the UAS-

based fatigue crack detection with GPS-denied navigation under a bridge.  
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The requirements for fatigue crack detection using three cameras (no UAS) in terms of camera 

distance and lighting conditions, in highly controlled office conditions, were determined as follows 

(E006 through E008): 

 Only the DJI Mavic camera took pictures with recognizable cracks in all lighting conditions 

(E007).  

 Based on the results from the Nikon and DJI Mavic camera, minimum surface illumination 

of 200 lx was recommended to capture proper images, even though the DJI Mavic was 

successful at lower lx. It is acknowledged that this may not be feasible in all situations. 

UAS mounted lights, or handheld spot lights, or both can be used effectively to increase 

surface illumination (E007 and E008). 

 The furthest camera distance for an image with visible fatigue crack was achieved with the 

Nikon camera in the Normal condition: 30 cm (12 in.), E008. 

The research team used three UAS to capture images of a test-piece with a known fatigue crack. 

This was done in the SMASH lab using three UAS: the 3DR Iris, equipped with a GoPro camera; 

the Goose, equipped with a Nikon camera; and the DJI Mavic. The images from this semi-realistic 

inspection were used to determine if fatigue crack detection using UASs is feasible (E009 through 

E011). The findings from this experiment under GPS-denied, but environmentally controlled 

conditions are outlined below: 

 Crack detection in DJI Mavic images was feasible in all lighting conditions (E010). Crack 

detection was enhanced by the DJI Mavic’s superior stability, which allowed the UAS to 

reach a closer camera distance to the inspected piece, and the camera’s exposure 

adjustment for darker scenes.  
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 The 3DR Iris, equipped with the GoPro camera, was not stable enough to provide the 

required camera distance in the absence of GPS signals, and therefore was not 

recommended for this task (E009). 

 The inspection results of the Goose, equipped with the Nikon camera, allowed the detection 

of the fatigue crack in the test piece. The camera distance was 70 cm (35 in.) and the camera 

was pre-zoomed, however the images was blurry due to vibrations (E011). 

The UAS were used to inspect the test piece underneath the UWRL Bridge to find the fatigue crack 

on S001 in an uncontrolled environment (E012 and E013): 

 Due to the 32 km/h (20 mph) wind, with maximum gust speed of 45 km/h (28 mph), the 

minimum safe camera distance for the 3DR Iris was 60 cm (24 in.), which was greater than 

what was achieved in the SMASH lab, 50 cm (20 in.), and there was no detection in the 

images (E012). 

 The pilot was able to provide a similar camera distance to that in the SMASH lab 

experiment with the DJI Mavic, 25 cm (10 in.) in experiment E013. 

 Only the DJI Mavic pictures showed the fatigue crack (E013) 

 The DJI Mavic showed the fatigue crack in all lighting conditions (E013). 

 The Goose was not flown due to the low clearance of the bridge. 

Finding fatigue cracks using image processing techniques was feasible when the research team 

used the DJI Mavic to capture the images and used the LoG edge detector as the primary image 

processing algorithm (E014). The experiment on the UWRL bridge showed that the DJI Mavic was 

the best device of the three UASs to help a bridge inspector find the fatigue cracks. This UAS 

provides images with visible fatigue cracks, even in different lighting conditions. The 2X digital 

zoom and the ability to change the camera exposure enhanced the quality of the FPV real-time 
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inspection. Also, the sonar altitude hold sensor stabilized the UAS, even during pilot described 

undesirable wind conditions (E012).  

The Goose, as equipped, was sufficient for finding some cracks in the laboratory, but its images 

exhibited much blurrier pictures, which was thought to be detrimental to the inspection process. 

Additionally, its control hardware, software, and size made the UAS more difficult to control 

compared to the DJI Mavic. The advantage of the Goose as a UAS is its payload capacity and with 

additional tuning of its flight characteristics, the Goose may eventually be considered feasible 

when additional sensors are mounted on the UAS. Overall, the limitations of the Goose were such 

that it did not perform on the same level as the off-the-shelf DJI Mavic. 

The inspection simulations in the SMASH lab and at the UWRL bridge showed that the 3DR Iris, 

equipped with the GoPro camera, was unable to provide images with visible fatigue cracks. While 

much more economical and readily available, this UAS is not recommended for image-based 

fatigue crack detection.  

The research team also investigated the feasibility of fatigue crack detection using passive and 

active thermography and two thermal cameras (E015 through E020). Even though the fatigue 

cracks were detectable in thermal images taken by the more sensitive camera, thermal fatigue 

detection using UASs is best with: 

 Active thermography. 

 Camera distance of 5 cm (2 in.).  

 +/- 0.2ºC sensitivity. 

For a real inspection, an in-service bridge in Ashton, Idaho, was inspected using a DJI Mavic UAS 

(E021 through E037). The primary goal of the inspection was to detect existing fatigue cracks. 
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Twelve locations on the floor beams, two splice plates, one concrete barrier, one frame web, and 

one frame bottom flange were among the locations covered by the UAS in this inspection.  

Reviewing the UAS images from the Ashton, Idaho bridge inspection, one can conclude the 

following:  

 UAS images capture concrete cracks, delamination, efflorescence, minor surface rusting, 

and poor paint conditions (E033 through E036). 

 Known fatigue cracks were not visible in captured images (E031 and E032). 

 Marks, drawn lines, spider webs, water stains, and unknown debris will hinder the detection 

of fatigue cracks using only visual images (E031 and E032). 

 Fatigue crack detection success is limited by camera capability and how close the UAS 

could get to the inspection location in the under-bridge environment. 

 The UAS fatigue crack detection on the in-service bridge was unsuccessful. 

Reviewing the flight performance from the Ashton, Idaho bridge inspection, the following can be 

concluded: 

 Wind speeds of 25 Km/h (15 mph) with gust speed of 40 Km/h (25 mph) played a 

significant role in achieving the desired camera distance. 

 Inspection of all floor beams by UAS was not possible since the UAS could not be 

controlled over the water flowing in the river (downward sonar sensor limitation).  

o Many UASs use this feature, which should be considered in future UAS 

inspections over water. With most UAS, this feature can be turned off, but 

performance will either further deteriorate or be ineffective. 

o Other GPS-denied avionic sensors should be investigated and evaluated for 

aiding under-bridge UAS control. Potential sensors include, LiDAR, upward 



161 

 

 

 

mounted sonar or laser range finders, additional on-board barometers, and 

additional image based navigational sensors. Sensors pointed upward at the 

bridge deck rather than downward where water is likely present are likely to 

have success. 

Reviewing the inspection information from the S-BRITE POD inspections: 

 The results of this section showed that the UAS-assisted FCM bridge inspection provided 

comparable accuracy, inspection time, and hit to call ratios to the hands-on inspections.  

 These results indicate that UAS-assisted FCM inspections may be possible, but given the 

limited data acquired here, deserves more thorough investigation.  
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Appendix A 

List of Specimens and Experiments 
 

Table A.1 Schedule of Specimens 

Specimen 
ID 

Source Defect Form Dimensions 

S01 USU Surface Concrete 
Cracks 

Lab-made Bridge deck 20’ x 13’ x 0.75’ 

S02 USU Surface Corrosion Steel Girder 1 W10 x 88 

S03 USU Deck Delamination Lab-made Bridge deck 20’ x 13’ x 0.75’ 

S04 ITD Fatigue Crack Steel Puck 1 D= 1.65” (4.2 
cm) 

S05 ITD Fatigue Crack Steel Puck 2 D = 1.6 5” (4.2 
cm) 

S06 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S07 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S08 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S09 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S10 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S11 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S12 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S13 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S14 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S15 ITD Possible Fatigue 
Crack 

Floor Beam to Girder 
Connection 

N/A 

S16 ITD Fatigue Crack Floor Beam to Girder 
Connection 

N/A 

S17 ITD Fatigue Crack Floor Beam to Girder 
Connection 

N/A 

S18 ITD Surface Corrosion Girder Splice N/A 

S19 ITD Surface Corrosion Nuts N/A 
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S20 ITD Efflorescence and 
Cracks 

Concrete Barrier N/A 

S21 ITD Delamination and 
Cracks 

Concrete Barrier  N/A 

 

Table A.2 List of Experiments 

Experimen
t ID 

Subfolder
s 

Intent 
Specime

n 
UAS Camera Site 

Page 
in the 
Repor

t 

E001 None 

Detect 
Concrete 

Cracks 
(Manually) 

S01 
3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

16-17 

E002 None 

Detect 
Concrete 

Cracks 
(Autonomously

) 

S01 
3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

17-18 

E003 None 
Detect 

Concrete 
Delamination 

S03 N/A 

FLIR E8 
Therma

l 
Camera 

SMASH 
Lab 

19-20 

E004 None 
Detect Steel 

and Weld 
Corrosion 

S02 
3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

20-21 

E005 
E5-1 3D Model 

Construction 
S01 

3DR 
Iris 

GoPro 
Hero 4 

SMASH 
Lab 

21-22 
E5-2 

E006 None 

Detect Fatigue 
Crack 

(Minimum 
Requirements) 

S04 
3DR 
Iris* 

GoPro 
Hero 4 

Indoors 
(Office) 

27-28 

E007 None 

Detect Fatigue 
Crack 

(Minimum 
Requirements) 

S04 
DJI 

Mavic* 
DJI 

Built-In 
Indoors 
(Office) 

30, 33 

E008 None 

Detect Fatigue 
Crack 

(Minimum 
Requirements) 

S04 
Goose

* 
Nikon 

Camera 
Indoors 
(Office) 

30, 34 
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E009 None 
Detect Fatigue 
Crack (Visual 
Inspection) 

S04 
3DR 
Iris 

GoPro 
Hero 4 

Indoors 
(SMASH 

Lab) 
35, 37 

E010 None 
Detect Fatigue 
Crack (Visual 
Inspection) 

S04 
DJI 

Mavic 
DJI 

Built-In 

Indoors 
(SMASH 

Lab) 

35, 38, 
39 

E011 None 
Detect Fatigue 
Crack (Visual 
Inspection) 

S04 Goose 
Nikon 

Camera 

Indoors 
(SMASH 

Lab) 
35, 40 

E012 None 
Detect Fatigue 
Crack (Visual 
Inspection) 

S04 
3DR 
Iris 

GoPro 
Hero 4 

Outdoor
s (UWRL) 

42-45 

E013 None 
Detect Fatigue 
Crack (Visual 
Inspection) 

S04 
DJI 

Mavic 
DJI 

Built-In 
Outdoor
s (UWRL) 

44, 
46-49 

E014 None 

Detect Fatigue 
Crack 

(Autonomously
) 

S04 S05 
DJI 

Mavic 
DJI 

Built-In 
N/A 51-53 

E015 None 
Detect Fatigue 
Crack (Passive 

Thermography) 
S04 N/A 

FLIR SC 
640 

Indoors 
(Office) 

54-55 

E016 None 
Detect Fatigue 
Crack (Passive 

Thermography) 
S05 N/A 

FLIR SC 
640 

Indoors 
(Office) 

54, 56 

E017 None 
Detect Fatigue 
Crack (Passive 

Thermography) 
S04 N/A FLIR E8 

Indoors 
(Office) 

56-57 

E018 None 
Detect Fatigue 
Crack (Passive 

Thermography) 
S05 N/A FLIR E8 

Indoors 
(Office) 

57-58 

E019 None 
Detect Fatigue 
Crack (Active 

Thermography) 
S04 N/A FLIR E8 

Indoors 
(Office) 

58, 60 

E020 None 
Detect Fatigue 
Crack (Active 

Thermography) 
S05 N/A FLIR E8 

Indoors 
(Office) 

50, 61, 
62 

E021 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S06 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75-77 

E022 None 
Detect Possible 
Fatigue Crack 

S07 
DJI 

Mavic 
DJI 

Built-In 
Outdoor

s 
75-77 
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(Visually in 
Ashton) 

(Ashton, 
ID) 

E023 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S08 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75,76, 
78 

E024 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S09 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 76, 
78 

E025 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S10 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75 

E026 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S11 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75 

E027 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S12 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 76, 
79 

E028 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S13 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75 

E029 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S14 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75 

E030 None 

Detect Possible 
Fatigue Crack 

(Visually in 
Ashton) 

S15 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75 

E031 None 

Detect Known 
Fatigue Crack 

(Visually in 
Ashton) 

S16 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 76, 
79, 80 

E032 None 

Detect Known 
Fatigue Crack 

(Visually in 
Ashton) 

S17 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 80, 
82, 83 
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E033 None 
Detect Surface 

Corrosion 
S18 

DJI 
Mavic 

DJI 
Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 80, 
83 

E034 None 
Detect Surface 

Corrosion 
S19 

DJI 
Mavic 

DJI 
Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 80, 
84 

E035 None 
Detect 

Efflorescence 
and Cracks 

S20 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

75, 81, 
84 

E036 None 
Detect 

Delamination 
and Cracks 

S21 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

81, 85 

E037 None 

Detect Fatigue 
Cracks 

(Autonomously
) 

S22 
DJI 

Mavic 
DJI 

Built-In 

Outdoor
s 

(Ashton, 
ID) 

86, 87 

* Static UAS without flying 
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Appendix B 

Concrete Crack Detection Code 
clc 
clear 
close all 
file=dir('C:\NDS\*.jpg');  
NF=length(file); 
orImage=cell(NF,1); 
grayIm=cell(NF,1); 
MedianIm=cell(NF,1); 
edge=cell(NF,1); 
binaryIm=cell(NF,7); 
% Creating a cell array for each binary image during each stage of the code,  
% '1' binary image constructed from applying Otsu's thresholding method 
% '2' binary image constructed from applying area cutoff value of 200 
% '3' binary image constructed from applying orientation cutoff value to 
% ramove vertical and horizontal lines  
% '4' binary image constructed from applying morphological operation of 
% majority 
% '5' binary image constructed from applying morphological operation of 
% bwareaopen to connect objects 
% '6' binary image constructed from applying another threshold on S 
% component of the HSV of original image to reduce the non-concrete 
% background 
% '7' binary image to show the skleton of the cracks 
RecIm=cell(NF,1); 
% Cell array to save the reconstructed image 
Cracks_L=cell(NF,1); 
% Cell array to save length of cracks detected in final step 
Hx=[-1 -2 -1;0 0 0;1 2 1]; 
% Sobel filter to detect Horizontal lines 
Hy=Hx'; 
% Sobel filter to detect Vertical lines 
paper_ap=cell(NF,7); 
% Define cell array to save resultant images using paper approach 
paper_cracksL=zeros(NF,1); 
% Vector to save length of cracks detected in final step 
position=[50,50]; 
% Define the position of the label 
for i=1:1 
    orImage{i}=imread('back-5cm-medium.jpg'); 
    grayIm{i}=rgb2gray(orImage{i}); 
    MedianIm{i}=medfilt2(grayIm{i},[5,5]); 
    edge{i}=abs(imfilter(MedianIm{i},Hx))+abs(imfilter(MedianIm{i},Hy)); 
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    binaryIm{i,1}=im2bw(edge{i},0.2*graythresh(edge{i})); 
    L1=bwlabel(binaryIm{i,1}); 
    stat1=regionprops(binaryIm{i,1},'Area'); 
    area=cat(1,stat1.Area); 
    v1=find(area>200); 
    binaryIm{i,2}=ismember(L1,v1); 
    L2=bwlabel(binaryIm{i,2}); 
    stat2=regionprops(binaryIm{i,2},'Orientation'); 
    orientation=cat(1,stat2.Orientation); 
    v2=find(abs(orientation)<89 & abs(orientation)>1); 
    binaryIm{i,3}=ismember(L2,v2); 
    binaryIm{i,4}=bwmorph(binaryIm{i,3},'majority',200); 
    binaryIm{i,5}=bwareaopen(binaryIm{i,4},50); 
    [~,s,v]=rgb2hsv(orImage{i}); 
    tempS=s(binaryIm{i,5}); 
    if isempty(tempS)==0 
       level=(min(tempS)+std(tempS)); 
       tempIm1=s.*binaryIm{i,5}; 
       binaryIm{i,6}=im2bw(tempIm1,level); 
    else binaryIm{i,6}=binaryIm{i,5}; 
    end 
    tempIm2=orImage{i}; 
    R=tempIm2(:,:,1); 
    NR=R; 
    G=tempIm2(:,:,2); 
    NG=G; 
    B=tempIm2(:,:,3); 
    NB=B; 
    NR(binaryIm{i,6})=255; 
    NG(binaryIm{i,6})=0; 
    NB(binaryIm{i,6})=0; 
    tempIm2(:,:,1)=NR; 
    tempIm2(:,:,2)=NG; 
    tempIm2(:,:,3)=NB; 
    RecIm{i}=tempIm2; 
    binaryIm{i,7}=bwmorph( binaryIm{i,6},'skel',inf); 
    Cracks_L{i}=size(find(binaryIm{i,7}),1); 
    value=Cracks_L{i}; 
    

RecIm{i}=insertText(RecIm{i},position,value,'AnchorPoint','Lefttop','FontSize',40); 
    h=figure(i); 
%     set(h,'visible','off'); 
    subplot(3,3,1) 
    imshow(grayIm{i}) 
    title('Grayscale Image', 'fontsize',6) 
    subplot(3,3,2) 
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    imshow(MedianIm{i}) 
    title('Median Filtered', 'fontsize',6) 
    subplot(3,3,3) 
    imshow(edge{i}) 
    title('Edge Image', 'fontsize',6) 
    subplot(3,3,4) 
    imshow( binaryIm{i,1}) 
    title('Threshold Image', 'fontsize',6) 
    subplot(3,3,5) 
    imshow(binaryIm{i,2}) 
    title('Post-Processed Image 1', 'fontsize',6) 
    subplot(3,3,6) 
    imshow( binaryIm{i,3}) 
    title('Post-Processed Image 2', 'fontsize',6) 
    subplot(3,3,7) 
    imshow( binaryIm{i,4}) 
    title('Post-Processed Image 3', 'fontsize',6) 
    subplot(3,3,8) 
    imshow( binaryIm{i,5}) 
    title('Post-Processed Image 4', 'fontsize',6, 'fontsize',6) 
    subplot(3,3,9) 
    imshow( binaryIm{i,6}) 
    title('Post-Processed Image 5', 'fontsize',6) 
    filename=['Oldversion.' num2str(i) '.jpeg']; 
    saveas(h,fullfile('C:\NDS\output',filename)); 
    h2=figure; 
%     set(h2, 'visible', 'off'); 
    subplot(1,3,1) 
    imshow(orImage{i}) 
    title('Original Color Image','fontsize',5.5) 
    subplot(1,3,2) 
    imshow(binaryIm{i,6}) 
    title('Detected Cracks Using Proposed Method','fontsize',5.5) 
    subplot(1,3,3) 
    imshow(RecIm{i}) 
    title('Reconstructed Image with Cracks and Statistics','fontsize',5.5) 
    filename=['Output2.' num2str(i) '.jpeg']; 
    saveas(h2,fullfile('C:\NDS\output',filename)); 
end 
pause; 
%%%% paper 

approach%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 

for i=1:NF 
    paper_ap{i,1}=rgb2gray(orImage{i}); 
    paper_ap{i,2}=abs(imfilter(paper_ap{i,1},Hx))+abs(imfilter(paper_ap{i,1},Hy)); 
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    paper_ap{i,3}=im2bw(paper_ap{i,2},graythresh(paper_ap{i,2})); 
    paper_stat=regionprops(paper_ap{i,3},'Area'); 
 
    paper_area=cat(1,paper_stat.Area); 
 
    paper_L=bwlabel(paper_ap{i,3}); 
 
    paper_v1=find(area>30); 
 
    paper_ap{i,4}=ismember(paper_L,paper_v1); 
     
    paper_ap{i,5}=bwmorph(paper_ap{i,4},'skel'); 
  
    paper_temp=orImage{i}; 
    
    paper_cracksL(i)=size(find(paper_ap{i,5}),1); 
  
    paper_R=paper_temp(:,:,1); 
    paper_G=paper_temp(:,:,2); 
    paper_B=paper_temp(:,:,3); 
   
    paper_R(paper_ap{i,4})=0; 
    paper_G(paper_ap{i,4})=0; 
    paper_B(paper_ap{i,4})=255; 
 
    paper_temp(:,:,1)=paper_R; 
    paper_temp(:,:,2)=paper_G; 
    paper_temp(:,:,3)=paper_B; 
  
    paper_ap{i,6}=paper_temp; 
  
    paper_value=paper_cracksL(i); 
 
    

paper_ap{i,7}=insertText(paper_ap{i,6},position,paper_value,'AnchorPoint','Lefttop','Fon
tSize',40); 

   
    h3=figure; 
    set(h3, 'visible', 'off'); 
    subplot(2,2,1) 
    imshow( paper_ap{i,1}) 
    title('Grayscale Image','fontsize',6) 
    subplot(2,2,2) 
    imshow(paper_ap{i,2}) 
    title('Edge Image (Talab)','fontsize',6) 
    subplot(2,2,3) 
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    imshow(paper_ap{i,3}) 
    title('Threshold Image (Talab)','fontsize',6) 
    subplot(2,2,4) 
    imshow(paper_ap{i,4}) 
    title('Post-Processed Threshold Image (Talab)','fontsize',6) 
    filename=['Paper.' num2str(i) '.jpeg']; 
    saveas(h3,fullfile('C:\NDS\output',filename)); 
    h4=figure; 
    set(h4, 'visible', 'off'); 
    subplot(1,3,1) 
    imshow(orImage{i}) 
    title('Original Color Image (Talab)','fontsize',5) 
    subplot(1,3,2) 
    imshow(paper_ap{i,3}) 
    title('Detected Cracks Using Talab Method (Talab)','fontsize',5) 
    subplot(1,3,3) 
    imshow(paper_ap{i,7}) 
    title('Reconstructed Image with Cracks and Statistics (Talab)','fontsize',5) 
    filename=['paper2.' num2str(i) '.jpeg']; 
    saveas(h4,fullfile('C:\NDS\output',filename)); 
     
    h5=figure; 
    set(h5, 'visible', 'off'); 
    subplot(1,3,1) 
    imshow(orImage{i}) 
    title('Original Color Image','fontsize',5) 
    subplot(1,3,2) 
    imshow(paper_ap{i,7}) 
    title('Reconstructed Image Using Talab Method','fontsize',5) 
    subplot(1,3,3) 
    imshow(RecIm{i}) 
    title('Reconstructed Image Using Proposed Method','fontsize',5) 
    filename=['Compare.' num2str(i) '.jpeg']; 
    saveas(h5,fullfile('C:\NDS\output',filename)); 
 
end 
% End
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Appendix C  

Fatigue Crack Detection Code 

clc 
clear 
close all 
%% SPATIAL DOMAIN 
%% IMAGE READING 
file = dir('E:\FCI\*.jpg') ;  
n = length (file) ; 
H_gaussian = ghpf (2592,4608, 300, 300) ; 
H_butter=bhpf(2592,4608,4,300); 
for k = 1:n 
    im_name  = file(k).name ; 
    im1 = imread (fullfile ('E:\FCI\', file(k).name)) ; 
    im = double(rgb2gray (im1)) ; 
    %%  IMAGE ENHANCEMENT 
    im_eq = histeq ( im ) ; 
    im_av = medfilt2 (im, [6,6]) ; 
    %% Sobel 
    so = fspecial ('sobel') ; 
    ed_sobel =  hypot (imfilter (im, so),imfilter (im ,so')) ; 
    [bw_sobel, T_sobel] = edge ( ed_sobel, 'sobel'); 
    bw_sobel = ed_sobel >= (mean (ed_sobel(:))+ 3*std (ed_sobel (:))) ;  
    bw_sobel = bwareaopen (bw_sobel, 50) ; 
    figure 
    imshow (ed_sobel,[]) 
    title (file(k).name) 
    %% Canny  
    bw_canny = edge ( ed_sobel, 'canny') ;  
    bw_canny = bwareaopen ( bw_canny, 50) ; 
    figure,  
    imshow (bw_canny) 
    title (file(k).name) 
    %%LoG 
    loG = fspecial ('log', 20 , 2) ; 
    ed_log = imfilter (im, loG) ; 
    bw_log = edge ( ed_log, 'log') ; 
    bw_log = ed_log >= mean ((ed_log(:)) +  std (ed_log (:))) ; 
    bw_log = bwareaopen (bw_log, 200) ; 
    figure 
    imshow (ed_log,[])  
    title (file(k).name)  
    figure 
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    imshow (bw_log) 
    %% Roberts 
    Rx = [1 0; 0 -1]; 
    ed_ro =  hypot (imfilter (im, Rx),imfilter (im,Rx')) ; 
    bw_ro = edge (ed_ro, 'roberts') ; 
    bw_ro = ed_ro >= mean ((ed_ro(:)) + 3* std (ed_ro(:))) ; 
    bw_ro = bwareaopen ( bw_ro, 50 ) ;  
%      
    figure,  
    imshow (bw_ro) 
    title ( file(k).name)  
%%% FREQUENCY DOMAIN 
    [r,c] = size (im) ; 
    im_fft = fftshift ( fft2 ( im)) ;  
    figure 
    mesh (H_butter)  
    grid off 
    figure 
    mesh (H_gaussian)  
    grid off 
%    
    H_butter=bhpf(r,c,4,300); 
    im_fft_but = H_butter.* im_fft ; 
    ed_butter = ifft2 (ifftshift ( im_fft_but)) ; 
    bw_butter = ed_butter <=-10 ;     
    bw_butter = bwareaopen ( bw_butter, 50) ; 
    figure 
    imshow ( bw_butter)  
    title (file(k).name) 
    im_fft_gau = H_gaussian.* im_fft ; 
    ed_gaussian = ifft2 ( ifftshift ( im_fft_gau)) ; 
    bw_gaussian = ed_gaussian <= -10 ; 
    bw_gaussian = bwareaopen ( bw_gaussian, 50 ) ;  
    figure 
    imshow ( bw_gaussian)  
    title (file(k).name) 
    R = im1 (:,:,1) ; 
    B = im1 (:,:,2) ; 
    G = im1 (:,:,2) ; 
    B = im1 (:,:,3) ; 
    R (bw_log) = 0 ; 
    G (bw_log) = 0 ; 
    B (bw_log) = 255 ; 
    im2= im1 ; 
    im2 (: ,:,1) = R; 
    im2 (: ,:,2) = G; 
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    im2 (: ,:,3) = B; 
    figure, imshow (im2)   
end 
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Appendix D 

All the inspection images can be found in the following link until December 2018. 

https://usu.box.com/s/810vzqaz8ltet74eoksv3hap7qa21mg6 
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